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ABSTRACT 
Constraint-based metabolic modeling methods such as Flux Balance Analysis (FBA) are 
routinely used to predict metabolic phenotypes, e.g., growth rates, ATP yield, or the fitness of 
gene knockouts. While powerful, FBA has some important limitations. For example, FBA 
solutions are not unique and can contain thermodynamically infeasible cycles. FBA ignores 
gene regulation, and thus FBA solutions may not be compatible with experimentally 
determined gene expression states. Crucially, FBA ignores important biological constraints, 
such as limits imposed by the finite cell volume on protein counts, a phenomenon often 
termed molecular crowding. In this thesis, I introduce three different ways to improve Flux 
Balance Analysis predictions.  

The first improvement eliminates thermodynamically infeasible cycles. It is based on a fast 
postprocessing step for constraint-based solutions. The algorithm, termed CycleFreeFlux, 
removes internal cycles from any given flux distribution v(0) without disturbing other fluxes 
not involved in the cycles. It works by minimizing the sum of absolute fluxes ||v||1 while (i) 
conserving the exchange fluxes and (ii) using the fluxes of the original solution to bound the 
new flux distribution. This strategy reduces internal fluxes until at least one reaction of every 
possible internal cycle is inactive, a necessary and sufficient condition for the thermodynamic 
feasibility of a flux distribution. If alternative representations of the input flux distribution in 
terms of elementary flux modes exist that differ in their inclusion of internal cycles, then 
CycleFreeFlux is biased towards solutions that maintain the direction given by v(0)  and 
towards solutions with lower total flux ||v||1. My method requires only one additional linear 
optimization, making it computationally very efficient compared to alternative strategies.  
 
The second improvement of FBA, termed ccFBA (for capacity-constrained flux balance 
analysis), provides a framework to convert any complete FBA model into a model for 
metabolic modeling with enzyme kinetics (MOMENT) that accounts for molecular crowding. 
I  provide an improved implementation of a molecular crowding model for E. coli and the 
first such implementation for the yeast Saccharomyces cerevisiae. ccFBA is an extension to 
sybil, a library for efficient constraint-based modeling in the R environment for statistical 
computing. ccFBA improves the original implementation of MOMENT by partitioning 
multifunctional enzymes between the different reactions that they catalyze. Although the 
improved E. coli implementation includes kinetic constants for 117 additional reactions, 
predicted E. coli growth rates across different carbon sources still show much less variation 
than observed experimentally; this discrepancy is likely due to the condition-dependent 
expression of proteins in preparation for environmental changes, an important but as yet 
poorly understood element of microbial metabolism. 
 
Finally, I introduce three novel methods that use transcriptomic and/or proteomic data to 
predict metabolic fluxes on a genome scale. The first of these methods is called FECorr. 
FECorr fits piecewise linear functions to the experimentally observed relationship between 
gene expression and possible flux ranges determined from simulations. To do this, it utilizes 
gene expression from multiple experiments. The flux distributions predicted from these 
functions show better agreement with measured metabolic fluxes than all other gene 
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expression methods compared in a previous benchmark study. The second method I introduce 
in the final part of the thesis is called ATM-FBA. It automatically identifies optimal 
thresholds to distinguish active from non-active genes and reactions. ATM-FBA also 
performs slightly better than previously published gene expression methods. The third new 
method is termed eFBA-gene. Similar to other methods, it uses a constant threshold as input 
and formulates a mixed-integer linear programming (MILP) problem with the objective to 
minimize the discrepancy between expression data and predicted flux distributions. However, 
in contrast to other expression-based methods, eFBA-gene scores the agreement between 
simulated fluxes and expression data not on a per-reaction basis, but on a per-gene basis. For 
some combinations of gene expression threshold and flux threshold, eFBA-gene also 
outperforms other gene expression methods. 
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ZUSAMMENFASSUNG 
Beschränkungs-basierte Methoden zu metabolischen Modellierung (insbesondere die Flux-
Balance-Analyse, FBA) werden routinemäßig für die Vorhersage metabolischer Phänotypen 
eingesetzt, etwa zur Berechnung von Wachstumsraten, der ATP-Ausbeute oder der Fitness 
von Gen-Knockouts. Trotz der Leistungsfähigkeit der FBA hat diese Methode einige 
wichtige Anwendungsgrenzen. FBA-Lösungen sind nicht eindeutig bestimmt und können 
thermodynamisch unmögliche interne Zyklen beinhalten. FBA ignoriert die Regulation von 
Genen, weshalb FBA-Lösungen eventuell experimentell bestimmten Genexpressions-
Zuständen widersprechen. Entscheidend für die Limitierungen der FBA ist die Tatsache, dass 
diese Methode wichtige biologische Beschränkungen ignoriert. Insbesondere beschränkt das 
begrenzte Volumen der Zelle die Menge an Proteinen, die gleichzeitig exprimiert werden 
können, ein Phänomen, das häufig als molekulare Verdrängung (molecular crowding) 
bezeichnet wird. In dieser Dissertation führe ich drei verschiedene Arten ein, mit Hilfe derer 
die Flux-Balance-Analyse verbessert werden kann. 

Die erste Verbesserung eliminiert thermodynamisch unmögliche Zyklen. Sie basiert auf 
einem schnellen Nachverarbeitungsschritt für beschränkungs-basierte Lösungen. Der 
Algorithmus CycleFreeFlux entfernt interne Zyklen von einer beliebigen Flussverteilung 
v(0), ohne diejenigen Flüsse zu verändern, die nicht an Zyklen beteiligt sind. Das Verfahren 
arbeitet über die Minimierung der Summe der Flussbeträge ||v||1. Sie benötigt lediglich einen 
linearen Optimierungsschritt und ist damit im Vergleich zu alternativen Strategien 
ausgesprochen effizient in Bezug auf seine Laufzeit. 

Die zweite Verbesserung der FBA, ccFBA (für capacity-constrained FBA, Kapazitäts-
beschränkte FBA), stellt einen Rahmen für die Konvertierung eines beliebigen vollständigen 
FBA-Modells in ein Model für metabolische Modellierung unter Berücksichtigung der 
Enzymkinetik (MOMENT) zur Verfügung, welches die Beschränkung durch molekulare 
Verdrängung berücksichtigt. Ich stelle eine verbesserte Implementierung für das Bakterium 
E. coli sowie die erste Implementierung überhaupt für die Hefe Saccharomyces cerevisiae zur 
Verfügung. ccFBA ist eine Erweiterung von sybil, einer Bibliothek für effiziente 
beschränkungs-basierte Modellierung in der Umgebung für statistische Berechnungen R. 
ccFBA verbessert die ursprüngliche Version von MOMENT, indem sie multifunktionale 
Enzyme zwischen den verschiedenen von ihnen katalysierten Reaktionen aufteilt. Obwohl die 
verbesserte Implementierung für E. coli kinetische Konstanten für 117 zusätzliche Enzyme 
enthält, zeigen die vorhergesagten Wachstumsraten auf verschiedenen Kohlenstoffquellen 
dennoch eine sehr viel geringere Variation als die entsprechenden experimentellen Werte; 
diese Diskrepanz ist vermutlich auf die Umgebungs-abhängige Expression von Proteinen in 
Vorbereitung auf Umgebungsveränderungen zurück zu führen, ein wichtiges, aber noch 
weitgehend unverstandenes Phänomen des mikrobiellen Metabolismus. 

Schließlich führe ich noch drei neuartige Methoden ein, die Transkriptom- oder 
Proteomdaten verwenden, um metabolische Flüsse auf Genomskala vorherzusagen. Die erste 
dieser Methoden bezeichne ich als FECorr. FECorr fitted stückweise lineare Funktionen an 
die Beziehung zwischen experimentell beobachteter Genexpression und den aus 
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Simulationen erhaltenen möglichen Wertebereich des Flusses der entsprechenden Reaktion. 
Dafür nutzt es Genexpressionsdaten aus verschiedenen Experimenten simultan. Die 
Flussverteilungen, die so vorhergesagt werden, zeigen eine bessere Übereinstimmung mit 
gemessenen Flusswerten als alle anderen Methoden, die in einer kürzlich publizierten 
Vergleichsstudie untersucht wurden. Die zweite von mir eingeführte Methode in diesem Teil 
der Dissertation wird als ATM-FBA bezeichnet. Sie identifiziert automatisch die optimalen 
Grenzwerte, um aktive von nicht-aktiven Genen und Reaktionen zu unterscheiden. ATM-FBA 
macht ebenfalls etwas bessere Vorhersagen als zuvor publizierte Methoden, die 
Genexpressiondaten verwenden. Die dritte neue Methode ist eFBA-gene. Ähnlich wie andere 
Methoden benutzt diese einen konstanten Grenzwert als Eingabe und formuliert ein Mixed-
Integer lineares Problem (MILP) mit dem Ziel, die Diskrepanz zwischen Expressionsdaten 
und vorhergesagten Flüssen zu minimieren. Im Gegensatz zu anderen Methoden bewertet 
eFBA-gene jedoch die Übereinstimmung zwischen simulierten Flüssen und 
Genexpressiondaten nicht pro Reaktion sondern pro Gen. Für bestimmte Kombinationen aus 
Genexpressions- und Fluss-Grenzwert macht auch eFBA-Gen bessere Vorhersagen als 
vergleichbare Methoden. 
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Chapter 1: Introduction

1.1 Metabolism
Metabolism as studied in this thesis is a set of chemical processes that break down sugars 
and other nutrients to synthesize energy and the main building blocks (metabolic 
precursors) of a cell. There are 11 precursors used to build the basic building blocks of 
the cell [1], namely pyruvate, -ketoglutarate, oxaloacetate, ribose-5-phosphate, acetyl-
CoA, erythrose-4-phosphate, fructose-6-phosphate,  glucose-6-phosphate, 
glyceraldehyde-3-phosphate, phosphoenolpyruvate, and 3-phosphoglycerate. An 
overview of basic metabolism is shown in Figure 1. Sugar is transported into the cell, 
where it is first phosphorylated and then converted to hexose monophosphate.The hexose 
monophosphate is either converted to Pyruvate or used to synthesize carbohydrates (like 
glycogen). Pyruvate in turn is either oxidized in TCA (Tricarboxylic Acid) cycle to form 
carbon dioxide or converted to bypoducts via fermentative pathway. Some intermediates 
in both pathways (glycolysis and TCA) are used as building blocks for macromolecules, 
that in turn are assembled into different cell structures [1]. 

 

Figure 1 Overall structure of cell synthesis from sugars, reproduced from [1] 

Metabolism can be seen as two processes, catabolism and anabolism. In catabolism, 
sugars are broken down into precursor metabolites. In anabolism macromolecules are 
built by polymerization of building blocks.  
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There are some diseases related to metabolic problems, like diabetes, obesity, cancer 
heart diseases[2]. Some of these metabolic disorders are inherited, while others develop 
when some organs like liver or pancreas become diseased. 

Study of metabolism can be done on four different levels [2]. The first level is the whole 
cell, in which substrates are considered as inputs, and biomass and by-products are 
considered as outputs. The second level is the sectors level, in which the metabolic 
process is seen as two basic sectors, catabolism and anabolism. The third level is 
pathways, in which pathways and segments of pathways are studied. The fourth level is 
the reaction level, and this is the finest level of study. 

1.2 Metabolic Models
Genome-scale metabolic models (GSM) are the complete set of reactions that a specific 
cell can perform. They can be constructed using the gene annotation of an organism’s 
genome. The model is then curated using the literature. Sometimes there are some gaps in 
the model that need to be filled.  The GSM represents the current knowledge about a 
given organism in a structured way. Currently there are models for more than 100 
organisms including humans [3]. The standard data format for representing metabolic 
models is SBML (Systems Biology Markup Language) [4]. The model basically consists 
of a sparse stoichiometric matrix, with each row representing a metabolite, each column 
representing a reaction, and each entry is the stoichiometric coefficient of the 
corresponding metabolite in the given reaction. 

Thiele and Palsson [5] proposed a protocol for constructing genome-scale  metabolic 
networks. It consists of four stages. In the first stage a draft reconstruction is generated 
from annotation of the genome of the organism of interest, using biochemical databases 
like KEGG [6]. Then in the second stage, the reconstruction is refined and curated. In the 
third stage the reconstruction is converted into a mathematical format and condition-
specific models are defined. The fourth stage is dedicated to network verification, 
evaluation and validation. The third stage can mostly be automated. Among the tools that 
can be used to reconstruct metabolic models are rBioNet [7] and SimPheny [8]; the first 
is free but the latter is commercial. 

A metabolic model can be seen as a directed, weighted hypergraph, with the nodes being 
the metabolites and the edges being the reactions. An example of a genome-scale 
metabolic model is E. coli's genome scale metabolic model iAF1260 [9], which contains 
2382 reactions , 1668 metabolites and 1260 genes. 

There are online databases for reconstructed models such as the BiGG database 
(http://bigg.ucsd.edu/) and the SEED database (http://www.theseed.org/wiki/Main_Page). 
Other websites that can be used in model curation and reconstruction are KEGG[6], 
Metacyc [10], BRENDA [11], and MetaNetX[12]. 
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1.3 Flux Balance Analysis(FBA)
Flux balance analysis is a mathematical approach for analyzing the flow of metabolites 
through a metabolic network [13]. It is a direct application of linear programming to 
biological systems that uses the stoichiometric coefficients for each reaction in the system 
to construct constraints for the optimization. Additionally, this method requires the 
assumption of a biological steady state, or homeostasis. Imposing this restriction allows 
the assumption that at any given time, the concentration of a given compound in the 
metabolic network is constant (i.e. no net production or consumption of any metabolite). 
Thus, there is no need to measure concentrations. Then, depending on what is being 
studied, a specific phenotype (such as the growth rate of a bacterium) will be selected and 
a relevant biological parameter (i.e., the objective function) will be minimized or 
maximized[14]. In case of unicellular organisms, this can be done usually by 
incorporating an artificial reaction to simulate Biomass production. This theoretical 
Biomass reaction mainly contains amino acids, ATP, and nucleotides with proportions 
required for growth and multiplication[15-18]. In some applications of FBA, the 
objective will be to maximize the production of a metabolite or a set of metabolites of 
interest. At known limits on the uptake rate of nutrients, the prediction of growth rates 
then becomes a linear optimization problem, which can be solved efficiently using linear 
programming. 

Since FBA is mathematically simple and requires no kinetic information about the 
reactions of the metabolic network, it is well suited for genome-scale metabolic networks. 

There are many applications of FBA. It can predict growth rates by adding an artificial 
reaction to represent biomass production. This reaction can be scaled so that the flux 
through it is equal to the exponential growth rate(μ)[13]. It also can predict the yield of 
cofactors like ATP. By restricting the flux through specific reactions to zero, FBA can 
efficiently predict the effect of gene knockout. Recently, FBA has also been used to find 
drug targets[19-22], while other investigators used FBA to study the evolution of 
metabolic systems [23-25] 

Mathematically, FBA is the following linear programming (LP) problem: 

   

 s.t.         

                             where    

Here, c is a vector of constant weights; S is the stoichiometric matrix; v is a vector of 
fluxes; and lb and ub are vectors of fixed lower and upper bounds, respectively; the 
inequalities must be respected element-wise.  



4

Popular FBA extensions include MTF, MOMA and FVA. 

MTF: FBA solutions are not unique and there are frequently multiple optima giving the 
same objective value. One way to choose from these solutions is the minimization of total 
flux, or MTF. In MTF, it is postulated that given the available external substrates and 
given a set of functionally important target fluxes required to accomplish a specific 
pattern of cellular functions, the sum of the stationary metabolic fluxes has to become a 
minimum[17, 26]. This can be seen as minimizing the cost of protein synthesis that 
catalyzes fluxes by assuming that all proteins have the same cost and catalyze reactions at 
the same rates. MTF adds a second LP to FBA. One important property of MTF is that 
the resulting flux distribution is always thermodynamically feasible. The MTF strategy is 
frequently also called parsimonious FBA (pFBA).  

FVA: FVA (flux variability analysis) is used to determine the range of possible values of 
each reaction from the multiple optima. The approach begins with determining the 
wildtype value of the objective function. From this solution, the range of variability that 
can exist in each flux in the network due to alternate optimal solutions can be calculated 
through a series of LP problems wherein the value of the original objective function is 
fixed and each reaction in the network is maximized and subsequently minimized to 
determine the feasible range of flux values for each reaction[27]. 

The mathematical formulation of this approach is described below: 

Case 1: 

 Max vi 
 s:t:  
         Zobj 
        for i = 1 ... n; 
Case 2: 
 Min vi 
 s:t:  
          Zobj 
        for i = 1 ... n; 
Here, Zobj is the value of the objective function in the previously solved wildtype FBA 
problem.  

MOMA:  many extensions of FBA exist for  the prediction of gene knockouts. 
Minimization of metabolic adjustment (MOMA) is a flux-based analysis, whereby the 
hypothesis that knockout metabolic fluxes undergo a minimal redistribution with respect 
to the flux configuration of the wild type is tested. MOMA employs quadratic 
programming to identify a point in flux space that is closest to the wild-type point in 
terms of its Euclidean distance and is compatible with the gene deletion constraint. 
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Comparing MOMA and FBA predictions to experimental flux data for E. coli pyruvate 
kinase mutant PB25, MOMA was found to display a significantly higher correlation than 
FBA[28]. A problem with the initial formation and application of MOMA is the 
redundancy of FBA solutions. The distance of the MOMA to the FBA solution may 
depend strongly on the chosen FBA solution.  

There are many tools that perform FBA calculations. The one most used is COBRA[29] 
and COBRAPy [30]. 

COBRA: The program for constraint-based reconstruction and analysis (COBRA) is a 
free MATLAB toolbox. COBRA allows quantitative predictions of cellular behavior 
using constraint-based approaches. Specifically, this software allows predictive 
computations of both steady-state and dynamic optimal growth behavior, the effects of 
gene deletions, comprehensive robustness analyses, sampling the range of possible 
cellular metabolic states and the determination of network modules[30]. 

sybil: is a free R package that performs FBA, MTF, MOMA, FVA, and gene knockout 
predictions. sybil is computationally more efficient than COBRA and doesn't require any 
commercial software[31]. Sybil is introduced in Detail below. 

1.4 Elementary Flux Modes (EFM)
Elementary flux mode analysis finds minimal functioning units in a metabolic network 
[32]. A minimal set of reactions that can carry steady-state nonzero flux alone in the 
network is called an elementary flux mode. There are three types of elementary flux 
modes. Type 1 starts from an exchange reaction and ends with another. Type 3 represents 
internal cycles, it contains only internal reactions. Type 2 contains currency metabolites 
driving the flux. 

1.5 Problems in FBA
While powerful, FBA has the following seven problems or limitations.  

1. The solution returned by FBA is not unique (existence of multiple optima), that is, 
there are multiple flux distributions giving the same objective value. This is because in 
large-scale models the number of variables (reactions) is much more than the number of 
equations (metabolites) (i.e. the problem is underdetermined)[33].  

2. FBA is limited in that it does not take into account the gene regulatory state, as 
described for example by gene expression data. In effect, the basic approach predicts 
metabolic capabilities assuming all reactions have the same maximum capacity. Indeed, 
many of the errors in the prediction of gene knockout phenotype were traced back to the 
lack of gene regulation in standard FBA models [20]. 
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3. Third, one of the difficulties of FBA predictions is that they frequently include 
thermodynamically infeasible cycles, i.e., sets of reactions that together carry a flux that 
has no influence on the exchange reactions of the model [34-38]. These are metabolic 
“perpetuum mobiles” and do not occur in biological reality. Such internal cycles thus 
distort predicted flux distributions and should be removed from the predictions. 
Thermodynamically infeasible cycles affect not only the predictions of FBA, but also 
those of many other constraint-based analysis methods. In particular, thermodynamically 
infeasible cycles distort the output of sampling algorithms that aim to characterize the 
steady-state solution space, and often lead to the assignment of unrealistically high values 
to the flux ranges that can be carried by individual reactions in flux variability analysis 
(FVA) [27]. 

4. FBA ignores important biological constraints, such as the constraint on cell volume 
and corresponding maximal protein budget. The enzymes needed to catalyze biochemical 
fluxes need to be produced using cellular resources, and they need to fit into the limited 
volume of the cell. The cost of protein synthesis consumes much of the energy in the cell 
and expression of unnecessary protein can limit the growth of microbes [39-41] . When a 
certain amino acid is available in the environment, the cell is likely to invest in making 
transporters instead of making enzymes to synthesize that amino acid. 20%–30% of the 
Escherichia coli cytoplasm is occupied by macromolecules, many of them enzymes, 
whose cytoplasmic concentration cannot be further increased without drastically affecting 
protein folding, protein–protein association rates, biochemical reaction kinetics, and 
transport dynamics within a cell [42]. 

5. The FBA method requires the definition of suitable upper bounds lbi= i on some fluxes 
in order to obtain a bounded growth rate[43]. In essence it maximizes yield [44]. 

6. The biological objective is not always possible to find and it can be context-sensitive. 
Also. it is more difficult in multicellular organisms to define such a cellular objective. 

7. Standard FBA was not able to explain some important phenomena related to 
metabolism like the Crabtree effect [45], Warburg effect[46], overflow metabolism[47], 
the order of different carbon source consumption, and cross-feeding[48]. 

The chapters of this thesis address several of these problems and provide 
implementations of algorithms that at least partially overcome them. 

1.6 Sybil
The algorithms developed in this thesis are implemented as extensions of the Sybil 
package for R [49]. To facilitate the description of these new implementations, it is 
necessary to first introduce the main functionalities of Sybil.  
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Sybil is a software tool for flux balance analysis (FBA) and related methods [31]. 
It is a free R package available from CRAN [50]. It contains different functions to 
perform several different types of constraint-based analyses. It is more efficient in terms 
of running time when compared to the most widely used COBRA toolbox. Also it is not 
dependent on commercial software like COBRA, which is implemented in MATLAB.  

Sybil needs to connect to mathematical solvers to solve different types of linear 
optimization problems. This is done via the R packages glpkAPI[51], cplexAPI[52], 
clpAPI[53], lpSolveAPI[54], and sybilGUROBI, which implement interfaces to the 
solvers GLPK[55], IBM ILOG CPLEX[56], COIN-OR Clp[57], lp_Solve[58], and 
Gurobi[59], respectively. GLPK is a free solver, but it is not able to solve quadratic 
programming (QP) problems, and its performance in solving mixed-integer linear 
programming (MILP) problems is much slower than that of CPLEX. Sybil represents the 
problem in a class optObj, while the solution is returned usually in a class optsol. The 
code in these packages is written in C and R. Currently, Sybil forms problems that 
require LP, MILP, and QP.  

New solvers can be easily interfaced to Sybil with the same methodology. The 
solver can be chosen by setting the parameter solver to the name of the package. The 
default solver can be known by calling the Sybil function 
SYBIL_SETTINGS("SOLVER"). 
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Figure 2 Sybil interface to different solvers 

1.6.1 Reading metabolic models
Sybil reads metabolic networks (models) in the form of tab delimited (TSV) files 

using the function readTSVmod(). The model is then represented as a modelorg class, 
used for further analysis. readTSVmod() takes the path and the prefix of the files as 
arguments. The file names are reconstructed from the prefix as: 

1- description file <prefix>_desc.tsv: containing the description of the model. The 
main fields are: name, id, number of genes, number of reactions, number of metabolites, 
and number of nonzeros. 

2- metabolite file <prefix>_met.tsv: containing data for metabolites. 

The fields are abbreviation, name, and compartment. 

3- reaction file <prefix>_react.tsv: containing data for reactions. The main fields 
are: abbreviation, name, equation, reversible, lowbnd, uppbnd, obj_coef, rule, and 
subsystem. The only required field is equation. It should be in the form substrate --> 
product in case of irreversible reactions and in the form substrate <==> product in case of 
reversible reactions. The only mandatory file is the reaction file. Example: 



9

library(sybil) 

mp  <- system.file(package = "sybil", "extdata") 
mod <- readTSVmod(prefix = "Ec_core", fpath = mp, quoteChar = "\"") 

Another way to read models is to use the package sybilSBML[31], which uses 
LibSBML[60] to read models in SBML[4] - the standard format for representing 
metabolic models. The function used to perform this is readSBMLmod(). It also 
returns a modelorg object. 

1.6.2 Running FBA
To run FBA, a model should be loaded in the form of a modelorg object. 
readTSVmod() can be used to get the model. Afterwards the optimizeProb() 
function is used to run FBA as follows.  The parameter algorithm is set to "fba"; this is 
also  the default value. 

data(Ec_core) # reads the E. coli core metabolic model 
optimizeProb(Ec_core,algorithm="fba")

These two lines result in the following output: 

solver:                                   glpkAPI 
method:                                   simplex 
algorithm:                                fba 
number of variables:                      95 
number of constraints:                    72 
return value of solver:                   solution process was 
successful
solution status:                          solution is optimal 
value of objective function (fba):        0.873922 
value of objective function (model):      0.873922 

The return value is an object of class optsol_optimizeProb; by default it can be returned 
as a list by setting the parameter retOptSol  to FALSE. To access the fluxes, the function 
getFluxDist can be used.  

sol=optimizeProb(mod,algorithm="fba")
getFluxDist(sol)
 
Displaying the objective value of the solution:
lp_obj(sol)
[1] 0.8739215 
Also, the function mod_obj can be used to get the model objective function; it will be the 
same value as lp_obj in the case of fba. 
 
Checking the solution status:
 checkOptSol(sol) 
Return code: 
 Code    #       meaning 
 0       1       solution process was successful 
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Solution status: 
 Code    #       meaning 
 5       1       solution is optimal 

Displaying the flux through exchange reactions: 
data(Ec_core)

# find exchange reactions 
ex <- findExchReact(Ec_core) 

# run fba 
opt <- optimizeProb(Ec_core) 

# get flux distribution of exchange fluxes 
fd <- getFluxDist(opt, ex) 

# display input and output (net flux) 
getNetFlux(fd)

1.6.3 Running FVA
To run FVA, the function fluxVar() is used. 
data(Ec_core)
fv <- fluxVar(Ec_core) 

 

To access the fluxes: 

nc=length(react_id(Ec_core))
#minimizations
fv_min=lp_obj(fv)[1:nc]
#maximizations
fv_max=lp_obj(fv)[(nc+1):(2*nc)]

Plotting the solution: 

plot(fv)

Checking the solution status: 

table(lp_stat(fv))

1.6.4 Running MTF
To run parsimonious FBA or minimum total flux (MTF), the function optimizeProb is 
used with the algorithm parameter set to "mtf". 

data(Ec_core)
mtf=optimizeProb(Ec_core,algorithm="mtf")
> mtf 
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solver:                                   glpkAPI 
method:                                   simplex 
algorithm:                                mtf 
number of variables:                      285 
number of constraints:                    263 
return value of solver:                   solution process was 
successful
solution status:                          solution is optimal 
value of objective function (mtf):        518.422086 
value of objective function (model):      0.873922 

The lp_obj is the sum of absolute fluxes and mod_obj is the model objective function. 

To see the fluxes: 

getFluxDist(mtf)

Checking the solution status: 

checkOptSol(mtf)
Return code: 
 Code    #       meaning 
 0       1       solution process was successful 

Solution status: 
 Code    #       meaning 
 5       1       solution is optimal 

As an extension in Sybil, costcoeffw and costcoefbw are two parameter vectors that can 
be used to find a flux distribution with minimum cost; the cost for a given flux is 
calculated as the flux value multiplied with the predefined weight (given separately for 
forward and backward fluxes). The default values are all ones, corresponding to MTF. 
The weight parameters also give the possibility to minimize the total flux for only a set of 
reactions (for example only enzyme catalyzed reactions) by setting cost to 0 for the 
reactions not optimized.  

1.6.5 Running single gene knockouts
The function oneGeneDel() can be used to perform multiple in silico single gene 
knockouts. The function performs n optimizations, with n being the length of the 
character vector in the argument geneList (Default: allGenes(model)).

data(Ec_core)

   # compute phenotypes of genetic perturbations via 
   # FBA (default) 
Ec_ogd <- oneGeneDel(Ec_core) 
compute affected fluxes ... OK 
calculating 137 optimizations ...
|            :            |            :            | 100 % 
|===================================================| :-)
OK
Done.
> Ec_ogd 
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solver:                                   glpkAPI 
method:                                   simplex 
algorithm:                                fba 
number of variables:                      95 
number of constraints:                    72 
number of problems to solve:              137 
number of successful solution processes:  137 

List all essential genes: 
> allGenes(Ec_core)[lp_obj(Ec_ogd)<0.000001] 
[1] "b0720" "b2779" "b2415" "b2416" "b1779" "b1136" "b2926" 
 
Solution status: 
> table(lp_stat(Ec_ogd)) 

  4   5
  2 135 
getMeanStatus(4,"glpkAPI")
[1] "no feasible solution exists" 

Sybil contains also a function lethal(), which finds the set of essential genes. Further, 
the function doubleGeneDel() can be used to get all pairwise gene knockouts. More 
generally, the function geneDeletion() can be used to simulate knocking out a set of 
genes of arbitrary size simultaneously. 
 
1.6.6 Running MOMA 
To run MOMA [28], we again use the  optimizeProb() function. The algorithm 
parameter is set to "moma", while for linear MOMA it can be set to "lmoma". Wildtype 
flux can be set using the parameter wtflux; otherwise, an arbitrary FBA solution is used 
as the wildtype flux. The following is an example of applying MOMA: 

data(Ec_core)
moma=optimizeProb(Ec_core, algorithm = "moma",solver="cplexAPI"); 

To get the fluxes, the function getFluxDist() is used. 

1.6.7 Adding a reaction
To add a reaction to a given metabolic network function, addReact() is used. The 
main parameters are the model, reaction id, metabolites, and Scoef, the stoichiometric 
coefficients of the reaction. This function can also be used to change parameters of a 
reaction already present in a given metabolic model. 

data(Ec_core)
newModel=addReact(model,id="TempReact",met=c("2pg[c]","newMet[c]"),Scoe
f=c(-1,1))
> shrinkMatrix(newModel,j="TempReact") 
2 x 1 sparse Matrix of class "dgCMatrix" 
          TempReact 
2pg[c]           -1 
newMet[c]         1 
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To add an exchange reaction, the function addExchReact is used; to remove a reaction, 
the function rmReact is used. 

1.6.7 Extending Sybil
To add a new algorithm to sybil, the sysBiolAlg class can be extended. The details of the 
new algorithm should be put in the initialize method. At the end of the method, a call to 
the next method is issued with the parameters of the optimization algorithm. These 
parameters include the constraint matrix LHS (which will be interpreted as the constraint 

), the type of the optimization (LP, QP or MILP) , constraint names, and 
column names. However, in this thesis, I use different strategies to extend sybil (see the 
next sections).   

1.7 Organization of the thesis
The rest of the thesis is organized into four chapters as follows. In chapter two, I 
introduce cycle free flux, a new, fast algorithm to get thermodynamically feasible flux 
distributions. This strategy is then applied to get loopless sampling and loopless flux 
variability calculations. In chapter three, ccFBA is introduced, which implements and 
extends protein cost or molecular crowding constraints for FBA. In chapter four, I 
introduce three expression-based methods to predict flux distributions. General 
conclusions are given in chapter five. 
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Chapter 2 Loopless Flux
Parts of this chapter are taken verbatim from the publication “CycleFreeFlux: Efficient 
removal of thermodynamically infeasible loops from flux distributions” [61], for which I 
was first author and performed all the analyses except the formal proof of the theorem. 

2.1 Introduction
 One of the difficulties of FBA predictions is that they frequently include 
thermodynamically infeasible internal cycles, i.e., sets of reactions that together carry a 
flux that has no influence on the exchange reactions of the model [35-38, 62]. These are 
metabolic “perpetual motion machines” and do not occur in biological reality. Such 
internal cycles thus distort predicted flux distributions and should be removed from the 
predictions. Thermodynamically infeasible cycles affect not only the predictions of FBA, 
but also those of many other constraint-based analysis methods. In particular, 
thermodynamically infeasible cycles distort the output of sampling algorithms that aim to 
characterize the steady-state solution space, and lead to the assignment of unrealistically 
high values to the flux ranges that can be carried by individual reactions in flux 
variability analysis (FVA) (Mahadevan and Schilling, 2003). 
One frequently used technique to remove thermodynamically infeasible cycles from FBA 
solutions is to minimize the sum of absolute fluxes (minimization of total flux, MTF, 
sometimes also called parsimonious FBA, pFBA) [26]. While MTF successfully removes 
the internal cycles, it does so by severely constraining the predicted flux distributions, 
and thus MTF results no longer represent the full solution space of the FBA problem. 
Comparisons to transcriptomic data indicate that at least in some cases, the MTF solution 
does not adequately reflect real-life biochemical fluxes [20, 63]. 
Several other approaches for the identification and/or exclusion of thermodynamically 
infeasible cycles have been proposed [36-38]. The most widely-used method, ll-COBRA 
[37], is based on the integration of thermodynamic constraints with FBA into a mixed-
integer linear problem (MILP). However, this approach is computationally expensive, 
resulting in runtimes that severely limit its applicability to large-scale studies.  
We propose a new algorithm, termed CycleFreeFlux, which removes all 
thermodynamically infeasible cycles from any given flux distribution with a single linear 
optimization step; this makes it orders of magnitude faster than previous approaches 
when applied to sampling or flux variability analyses of genome-scale metabolic 
networks. 

2.2 Characterization of internal cycles
To motivate the CycleFreeFlux algorithm, we first formally characterize 
thermodynamically infeasible flux distributions. Consider the following standard FBA 
problem: 
      
   subject to:                                                                                             
(1) 
      
 
In the following, we will call a flux distribution ’feasible’ if it is non-zero and adheres to 
all constraints in the FBA problem (1) (i.e., if it lies in the solution space of (1)). We call 
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a flux distribution  thermodynamically feasible if there exists an assignment of free 
energies  to the metabolites such that the free energy change caused by each active 
reaction is strictly negative, i.e., for all , with , 
where  denotes the -th column of  [37, 64], and  is the set of indices i for 
which . 
We will explicitly consider the free energies of external metabolites in order to deal 
correctly with thermodynamically infeasible flux distributions that involve transport 
reactions (reactions that shuttle metabolites between internal compartments and the 
external compartment). For each external metabolite, we add one reversible “exchange” 
reaction between the external compartment and an additional ‘NULL” compartment that 
is not explicitly modeled. Many genome-scale metabolic reconstructions already define 
exchange reactions in that way. For any given free energy of a metabolite present in the 
external compartment, we can set a hypothetical free energy outside the external 
compartment that drives the exchange reaction in the desired direction. Thus, exchange 
reactions as defined here are always thermodynamically feasible. When considering 
thermodynamical feasibility, we only need to examine internal reactions (including 
transport reactions), and it is hence convenient to partition the stoichiometric matrix into 
an internal and an exchange part, . 
We call a non-zero flux distribution  “internal” if, and only if, it fulfills the conditions 

 for all fluxes , and if all its exchange fluxes 
are zero. Thus, internal flux distributions do not change any internal or external 
metabolite concentrations; they can be thought of as combinations of internal cycles that 
collectively neither consume nor produce anything. If the constraints of (1) do not 
enforce any non-zero fluxes, then internal flux distributions are also feasible. 
As free energy is a state variable of metabolites, the free energy changes of the reactions 
active in   must add to zero in steady state: 

[37, 64]. Thus,  for at least one reaction . There 
is hence no thermodynamic driving force for at least one reaction in ; 
consequently, all internal flux distributions are thermodynamically infeasible. The 
following theorem (which was proven by our collaborator Florian Jarre, see [61]) 
characterizes thermodynamically feasible flux distributions: 
Theorem: A flux distribution  that is feasible for (1) is thermodynamically feasible 
if, and only if, there does not exist any internal flux distribution  with 

  and  for all . 
Proof: We may assume, without loss of generality, that  for all . (If not delete the 
k-th component of  and the k-th column of .) We may further assume that  for 
all . (If not replace the k-th component “ ” by “ ” and the -th column “ ” of  by 
“ ”.) Then, by definition,  is thermodynamically feasible, if, and only if, there exists 
a vector of free energies  such that  (i.e., each component of the vector   
must be negative). 
By Gordan’s theorem (see, e.g., Theorem 2.2.1 in [65]), this is the case, if, and only if, 
there does not exist a vector  with  and . Identifying  with  
the claim follows. 
We have thus shown that a feasible flux distribution  is thermodynamically feasible if 
and only if it cannot be “reduced” by subtracting an internal flux distribution . 
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2.3 Removing internal cycles from a given flux distribution
(CycleFreeFlux)

The theorem provides the motivation for the CycleFreeFlux algorithm: we aim to reduce 
a given flux distribution  to its thermodynamically feasible part. To achieve this goal, 
CycleFreeFlux minimizes the sum of absolute fluxes while (i) all exchange fluxes are 
kept constant, and (ii) no internal flux is allowed to change direction or increase in size. If 
the input flux distribution is the output of a previous optimization, CycleFreeFlux 
additionally constrains the value of the objective function   to its optimal value. We 
assume that there are no lower bounds  and no upper bounds  , i.e., all 
fluxes are allowed to be nonactive; otherwise, these constraints may enforce 
thermodynamically infeasible fluxes, and then   cannot be reduced to a feasible 
solution that is also thermodynamically feasible.  
We thus solve the following linear optimization problem: 
       
   subject to:                                                                                             
(2) 
      
      
                                                             for all exchange fluxes  
      
As fluxes are not allowed to change directions, we can transform (2) trivially to a linear 
problem by replacing the sum over the absolute values by two sums over positive and 
negative fluxes, respectively: 

 

The flux distribution  resulting from this optimization is ”structurally consistent” with 
. Here, we define a flux distribution  as structurally consistent with an input flux 

distribution  if  neither increases (in absolute value) nor inverts any fluxes compared 
to . CycleFreeFlux outputs a minimal (in terms of the sum of absolute fluxes ) 
flux distribution that is structurally consistent with the input flux distribution . 
 
Corollary: A flux distribution  that is feasible for (1) (with ) is 
thermodynamically feasible if, and only if, the output of the CycleFreeFlux algorithm (2) 
with input  is  itself. 
 
Proof: To simplify the presentation assume again that . If CycleFreeFlux returns 
a flux , then, by construction,  and 

. Thus, by the theorem,  is not thermodynamically feasible. 
Conversely, if  is not thermodynamically feasible, then, by the theorem, there exists 
an internal flux distribution  with . Then, 

 is feasible for (2) for small , reducing the objective value in (2), so that 
CycleFreeFlux will not return  as output.   
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Figure 3 illustrates our strategy on a simple toy model with five reactions, . All 
steady-state flux distributions in this model can be expressed as positive linear 
combinations of three convex basis vectors, the elementary flux modes , , and . 

and involve the exchange fluxes and and are thus type I extreme pathways. In 
contrast, the loop  involves only the internal fluxes , , and  and is hence type III 
(i.e., thermodynamically infeasible). 
The fluxes shown in the figure are our input flux distribution, . To apply the 
CycleFreeFlux algorithm, we constrain the internal reactions  and  to non-negative 
values (  and ), while the third internal reaction, , is 
constrained to non-positive values ( ). At the same time, we fix the 
exchange reactions at their input values, . Minimizing the total flux under 
these conditions reduces the flux through the internal loop down to the point where 

becomes zero, and hence the algorithm puts out  as the thermodynamically 
feasible part of the input flux distribution . 
 

 
Figure 3 A toy model illustrating our algorithms, consisting of three metabolites (A,B,C) that can be 

interconverted by three internal reactions . A can be taken up from the environment through the 
exchange reaction , while B can be secreted through . All fluxes except  are unidirectional, allowed to 

proceed only from left to right (which is also the nominal flux direction of ).The steady-state flux distributions 
of this model can be expressed as positive linear combinations of the extreme pathways . The cycle  
involves only internal fluxes (i.e., it is a type  extreme pathway), and is thus thermodynamically infeasible 

Note that the decomposition of the input flux distribution  in terms of the convex 
basis vectors is not unique: we can also write . Thus,  
would be an alternative thermodynamically feasible solution consistent with the input 
flux distribution . This alternative inverts the direction of one internal flux, , and is 
thus not structurally consistent with . 
The preference for structurally consistent solutions causes a corresponding bias if there 
exist alternative decompositions of  into elementary flux modes that are structurally 
inconsistent with ; in addition, CycleFreeFlux is biased towards solutions with lower 
total flux . That there always exists a structurally consistent solution is caused by 
the fact that internal flux distributions are cycles, and hence it is always possible to route 
the thermodynamically feasible flux through the cycle section that runs in the same 
direction. The condition of structural consistency with an input flux distribution is what 
differentiates CycleFreeFlux from MTF. 
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We can write the thermodynamically feasible output flux distribution  in 
terms of type  elementary flux modes, and the internal flux distribution  
in terms of type  elementary flux modes [34]. This allows us to write 

 

 

i.e., there exists a decomposition of the input flux distribution into type I and type  
elementary flux modes such that the output flux distribution consists exactly of the type  
contributions. 
Note that if the constraints in (1) entail lower flux bounds  and/or upper bounds 

, then these enforce nonzero fluxes through the corresponding reactions. Such 
bounds are rarely used in FBA-type analyses. However, if such bounds are used and are 
chosen inappropriately, they may result in non-zero activities of thermodynamically 
infeasible cycles. These will be removed by our algorithm, resulting in an output flux 
distribution that will not be feasible for the original problem. That such an inconsistency 
may be present can be detected by comparing the output of the CycleFreeFlux algorithm 
to the constraints of the original problem to check its feasibility. However, if one is 
certain that the constraints of (1) do not enforce internal cycles, then corresponding 
modifications of the constraints in (2) to handle this case are straightforward. This is 
particularly relevant to allow for a “maintenance energy” term, which enforces a fixed 
amount of energy consumption in many FBA models. 
Futile cycles involve the consumption and/or production of “currency metabolites” such 
as ATP. Futile cycles are often thermodynamically feasible. They are not internal flux 
distributions, and do not require special treatment in our formalism. 

2.4 Speed
The previous state-of-the-art in obtaining cycle-free FBA solutions was ll-FBA[37]. 
Because of their different strategies, the output of CycleFreeFlux and ll-FBA cannot be 
compared directly: ll-FBA [37] directly solves an FBA problem within the subspace of 
thermodynamically feasible flux distributions; in contrast, CycleFreeFlux takes any given 
steady-state flux distribution (which may or may not be the result of an FBA calculation) 
and removes its thermodynamically infeasible contributions. 

As the CycleFreeFlux algorithm is a post-processing step consisting of a single linear 
optimization, it increases the computation time approximately two-fold compared to 
standard FBA, and is thus very similar to an MTF strategy in terms of run times. Table 1 
compares the run time of CycleFreeFBA (standard FBA followed by the CycleFreeFlux 
algorithm) to that of the ll-FBA algorithm proposed by [37]. For better comparability, 
both algorithms were implemented in R [49] and are run on the same metabolic networks, 
using the default environments and biomass reactions supplied by the BIGG database 
[66]. For the genome-scale networks of E. coli [9] and Saccharomyces cerevisiae [67], 
cycleFreeFlux is 400-2500 times faster than the alternative ll-FBA algorithm, which 
solves a mixed-integer linear problem instead of a standard linear programming problem. 
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Table 1 Runtime comparison between ll-FBA (Schellenberger et al., 2011) and CycleFreeFBA. 

Model reactions No Solver ll-FBA1 CycleFreeFlux1 
Ec_core 95 GLPK 0.08 0.03 
Ec_core 95 CPLEX 0.42 0.04 
iMM904 1577 GLPK 225 0.53 
iMM904 1577 CPLEX 172 0.16 
iAF1260 2382 GLPK 1099 0.79 
iAF1260 2382 CPLEX 649 0.25 
1 Run times in seconds on a standard laptop with core i7 processor and 8 GB RAM 

2.5 Cycle free sampling
The CycleFreeFlux algorithm can be applied to any given steady-state flux distribution. 
Thus, it can not only remove internal cycles from FBA solutions, but it can also be 
directly applied to random samples of the solution space [68]. To remove 
thermodynamically infeasible cycles from sampled flux distributions, we reduce each 
sample to its contributions from type I extreme pathways as explained above. 

 
Figure 4 Cycle-free random sampling of the solution space. (a) Histogram of the sampled flux values for fluxes 

involved in internal cycles. (b) The same fluxes after reduction to the cycle-free solution subspace with the 
CycleFreeFlux algorithm. (c) Flux values of reactions not involved in active internal cycles. Random samples 
were taken from the solution space of the E.coli genome-scale metabolic network iAF1260 in a glucose-limited 

aerobic medium. Flux values affected by involvement in active internal cycles were identified as those that 
changed through the application of CycleFreeFlux; these are summarized in (a), while all the remaining 

(unchanged) fluxes are summarized in (c). 

Flux samples taken from the two solution spaces including and excluding internal cycles 
are compared in Figure 4 for the genome-scale metabolic model of E. coli [9]. The 
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sampled fluxes involved in thermodynamically infeasible internal cycles (Figure 4a) are 
reduced (Figure 4b) to the “normal” range observed for reactions not involved in active 
loops (Figure 4c; these non-loop fluxes are identified as those that remain unchanged 
when applying the CycleFreeFlux algorithm). 
The sampling of the thermodynamically feasible solution space aims to cover all steady-
state solutions with the same finite probability. This aim is not fully achieved through the 
CycleFreeFlux algorithm, as can be seen from the example in Figure 3. Ideally, the two 
type I extreme pathways,  and , should be sampled in equal proportions. However, 
any initial sample that contains a nonzero flux around will be reduced to a flux 
distribution that only contains , biasing the samples towards this flux mode. Any point 
in the solution space that is involved in an internal cycle and simultaneously has a non-
unique representation in terms of elementary flux modes may cause a violation of 
uniform sampling. We note, however, that uniform sampling is required only when 
volume-related features are investigated. In many applications, the bias introduced by 
CycleFreeFlux may be preferable to the bias caused by the inclusion of 
thermodynamically infeasible flux distributions. 
ll-COBRA [37] also suggests to remove internal cycles from sampled flux distributions in 
a post-processing step, minimizing the distance of the flux vectors between the sampled 
flux vector and the cycle-free subspace. As can be seen from the example in Figure 3, this 
strategy introduces a bias that is very similar to the one caused by the CycleFreeFlux 
algorithm. Thus, currently no published method exists that guarantees uniform sampling 
of the thermodynamically feasible solution space; as CycleFreeFlux increases the time 
for sampling only about twofold compared to methods that include internal cycles, we 
consider CycleFreeFlux the method of choice. 

2.6 Cycle free flux variability analysis
Flux variability analysis (FVA) calculates upper and lower bounds for steady-state fluxes 
through each reaction at the optimal value of the objective function [27]. Thus, FVA 
results can be used to characterize the space of alternative optimal solutions to an FBA 
problem. Thermodynamically infeasible internal cycles are unbounded except by a priori 
constraints, leading to artifactual bounds for all reactions involved in such cycles [27]. 
To exclude internal cycles from FVA, we propose CycleFreeFVA, an extension of the 
CycleFreeFlux algorithm. Standard FVA performs two linear optimizations for each 
reaction Ri, one maximization and one minimization [27]. We extend this approach by 
iteratively performing maximizations (and later minimizations) and removing cycles. To 
obtain the flux variability for reaction Ri excluding thermodynamically infeasible internal 
cycles (i.e., based only on type I pathways), we apply the following algorithm. Any 
constraints added in one iteration are maintained through further iterations, and the flux 
distribution  is updated accordingly in each iteration: 
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The upper bound for  excluding internal cycles is now in  . In sum, after 
maximizing the flux through reaction Ri, the algorithm checks if the reaction is involved 
in internal cycles by applying the CycleFreeFlux algorithm to the resulting flux 
distribution ; if the flux  through Ri is reduced through the removal of internal 
cycles, then the original maximum  was indeed influenced by such cycles. We 
identify one such cycle involving  by fixing  at its original (cycling) maximum  
and then removing all other cycles; afterwards, we break this cycle by reducing its flux as 
little as possible, but as much as necessary. These steps are repeated until 
all loops involving  have been removed. The calculation of the lower bound for  
excluding internal cycles is performed in the same way, replacing maximizations with 
minimizations. 
 

Repeat: { 
find a steady state flux distribution  with maximal flux  through Ri ; 
apply the cycleFreeFlux algorithm to   , resulting in a new flux distribution 

 ; 
if ( ) { 

 exit iteration (as  is not affected by internal cycles) ; 
} else { 

apply the CycleFreeFlux algorithm to  while constraining  ,  
resulting in a new flux distribution  that contains one internal cycle  
                      involving Ri ; 
break the internal cycle: constrain the fluxes  that are zero in  but  
                     not in  to  one at a time if many can go to 0. 

                } 
} 



22

 
Figure 5 Cycle-free flux variability analysis. (a) Histogram of the maximal flux values that result from 

involvement in internal cycles. (b) Maximal flux values of the same reactions after excluding internal cycles with 
the CycleFreeFVA algorithm. (c) Maximal flux values of reactions not affected by internal cycles. Analyses were 

performed for the E. coli genome-scale metabolic network iAF1260 in glucose-limited aerobic medium. 
Reactions affected by involvement in internal cycles were identified as those for which the maximum flux 

differed between standard FVA and CycleFreeFVA; these are summarized in (a) and (b), while the remaining 
(unaffected) reactions are summarized in (c). 

To see how the algorithm works, it is again instructive to consider the toy model in 
Figure 3. Let us assume that we want to calculate flux variability within the steady-state 
solution space to an FBA problem with  as the objective function and . 

and  are then fixed by the boundary conditions, and we need to find the 
variability of the remaining three reactions. In standard FVA, we would conclude that  
can vary within the full range allowed by the a priori constraints, say, . 
Now let us apply the above algorithm for . The first flux distribution with maximal flux 
through  will be the one indicated in Figure 3, . Application of the 
CycleFreeFlux algorithm reduces this to .   changed its value between  
and , indicating that we’re not done yet. As the model contains only one internal 
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cycle, we have . The only reaction that is zero in  but not in  is 
; this reaction we now constrain to zero. The maximal value for  is now 1. Exactly 

the same happens when we consider .  
What about ? Its maximum, 1, is not affected by the internal cycle . Its minimum is 
again realized in the flux distribution  indicated in Figure 3. Again, we 
have and . Reducing the flux through the cycle as little as possible, 
but as much as necessary, we identify the lower limit . 
We applied the CycleFreeFVA algorithm to the genome-scale model of E. coli [9]. 
Figure 5 shows the distribution of the maximal fluxes for reactions that can be affected 
by internal cycles with standard FVA (Figure 5a) and with CycleFreeFVA (Figure 5b), 
and compares those to the distribution for fluxes not affected by internal cycles (Figure 
5c). Note that after the publication of our article describing this method [61], we became 
aware of a very similar strategy for thermodynamically feasible flux variability analysis 
that was proposed independently by Arne Müller [69]. 

2.7 Enumeration of internal cycles
To enumerate thermodynamically infeasible cycles, we propose a method based on an 
extension of the CycleFreeFVA approach (function enumerateCycles). We perform 
CycleFreeFVA for each internal flux , and we simply store the cycles removed in each 
iteration (i.e., ). Because the same cycle may be identified for each 
reaction involved in the cycle, we need to restrict the total set of identified internal cycles 
to unique reaction sets. 
Each set of reactions identified through this algorithm represents a unique internal flux 
distribution that cannot be reduced while maintaining the flux through one of its reactions 
(the one used for its identification); thus, it is an ”elementary” internal cycle (type III 
elementary flux mode). 
I used this algorithm to identify thermodynamically infeasible cycles in the genome-scale 
metabolic model for E. coli [9]. The identification of internal cycles in this network took 
less than five minutes on a standard laptop (core i7 processor and 8GB RAM). Excluding 
trivial cycles involving only two reactions (i.e., forward and backward reactions of the 
same stoichiometry), I identified 27 non-trivial thermodynamically infeasible cycles, 
listed in Table 8. This is identical to the number reported by Wright and Wagner (2008), 
27; as the detailed results of [36] are not available, I could not examine if the identified 
cycles were identical. 
 
Recently, De Martino et al. (2013) reported a lower bound of 189 non-trivial 
thermodynamically infeasible loops (  reactions each) in the same metabolic network 
model. 11 of these internal cycles were also identified by our approach; the remaining 
178 cycles violate at least one a priori thermodynamic constraint, i.e., at least one 
reaction in the cycle carries flux in a direction not allowed by the published model [9]. 
 
To speed up the enumeration of thermodynamically infeasible cycles, I additionally 
implemented a method that transforms the model into a reduced irreversible form that 
only includes reactions involved in cycles (function getModel_WW), similar to the 
strategy proposed in [36]. First, I identified “trivial” cycles, i.e., pairs of reactions that are 
forward and backward direction of the same stoichiometry. I then performed standard 
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FVA for all reactions of the network, excluding the reverse direction of the currently 
studied reaction.  
I further implemented an algorithm termed “extended cycle” in enumerateCycles, which 
merges two previously identified and overlapping cycles to find larger cycles directly.  
I applied my algorithms to the S. cerevisiae model iMM904, detecting 40 
thermodynamically infeasible cycles (Table 9).  
I applied the preprocessing step (getModel_WW) followed by an application of 
enumerateCycles also to the human metabolic network reconstruction Recon1 [70]. This 
resulted in a list of over 4 million thermodynamically infeasible cycles before I aborted 
the search. 
sybilcycleFreeFlux is an extension to Sybil [31]. As Sybil, sybilcycleFreeFlux is 
available free of charge from CRAN (http://cran.r-project.org/web/packages/ 
sybilcycleFreeFlux/) 
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Chapter 3 ccFBA: building MetabOlic Models with ENzyme
kineTics (MOMENT) from FBAmodels in R

3.1 Introduction
As outlined in Chapter 1, FBA ignores important cellular constraints beyond the 
stoichiometry of biochemical reactions: the enzymes needed to catalyze biochemical 
fluxes need to be produced using cellular resources, and they need to fit into a finite 
intracellular space. If the intracellular concentration of enzymes becomes too large, 
molecular crowding hinders the diffusion of proteins and metabolites necessary for the 
efficient catalyzation of biochemical reactions.  

To account for this molecular crowding, Beg et al.  [42] incorporated an upper limit on 
total enzymatic capacity into the FBA framework. They added a constraint on the volume 
available for enzymes (FBA with molecular crowding,   FBAwMC), showing that this 
extension of FBA improved the prediction of phenotypes for E. coli.  

Goelzer et al. [43] extended this approach by considering metabolic capability, 
translation capability, and density constraints (RBA). RBA requires the categorization of 
Metabolites as internal, recycled, or metabolic precursors; further, it assumes that the 
turnover numbers (Kcat) of all enzymes are identical, and does not incorporate gene-
protein-reaction (GPR) rules that associated reactions with specific enzymes.  

MetabOlic Modeling with ENzyme kineTics (MOMENT) [71] extended FBAwMC by (i) 
including GPR rules, (ii) using molecular weights to estimate enzyme volume, and (iii) 
increasing the number of reactions with experimentally determined turnover rates. A 
recent theoretical study has shown that solutions to such constraint-based models are 
elementary flux modes [72].  

Here, I present an improved general implementation of MOMENT in R, named ccFBA 
(for cost-constrained flux-balance-analysis). ccFBA is an extension to Sybil [31]. As 
Sybil, ccFBA is available free of charge from CRAN (http://cran.r-
project.org/web/packages/sybilccFBA/) 

3.2 Algorithm and Implementation
The MOMENT algorithm was originally implemented in Matlab for E. coli, with hard-
coded model details and constraints [71]. Thus, it is not straight-forward to modify the 
existing implementation or to apply it to additional model organisms.  In ccFBA, the 
metabolic model is incorporated as an input parameter, as are the turnover numbers and 
the molecular weights. In addition to the E. coli model originally implemented by [71], I 
also provide a ccFBA model for the baker’s yeast Saccharomyces cerevisiae (see below).  
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However, a major strength of ccFBA is its efficient mechanisms to construct models for 
additional organisms. Building a new ccFBA model should start from an existing FBA 
model, such as those available from the BIGG database [73]. To build a new ccFBA 
model, we need to extend the FBA model by (i) converting the Boolean rules that link 
genes to reactions (GPR rules) to linear constraints; (ii) adding molecular weights to all 
proteins covered by GPR rules; (iii) adding turnover rates; and (iv) determining the total 
constraint on enzyme volume (the budget).  

Steps (i)-(iii) are performed by the ccFBA function cfba_moment. Step (iv), determining 
the budget, requires either an estimate of the percentage of cellular mass taken up by 
enzymes, or a fit of model predictions to experimental data. Molecular weights can either 
be supplied by the user, or can be calculated from amino acid sequence files through the 
ccFBA function calc_MW. 

ccFBA converts GPR rules to constraints with the following algorithm: 

         A or B          vi    kcat,i ( nA + nB ) 

             A and B         vi   kcat,i min( nA , nB ) 

Here, A and B are two proteins that catalyze reaction i either independently (OR) or 
together (AND); vi is the metabolic flux of this reaction; and kcat,i is the corresponding 
turnover rate. nA is the mass fraction of protein copies of A, i.e., the weight of A 
molecules divided by the total dry weight of the cells (analogous for nB). These protein 
mass fractions are treated as auxiliary variables, which are set to the values that maximize 
the objective function during the optimization step. More complex relationships between 
genes and reactions are treated by applying the rules recursively. In the case of multiple 
OR relationships, we directly use the sum of all variables instead of the recursion, which 
reduces the number of constraints and auxiliary variables. The global constraint on total 
cellular enzyme volume is then expressed as 

                                           (1)

where  denotes the molecular weights of protein encoded by gene , and C denotes 
the total weights of proteins. MOMENT incorporates a careful treatment of GPR 
associations. However, the implementation in [71] does not penalize the usage of the 
same protein in different reactions. In essence, this means that multifunctional enzymes 
are assumed to be capable of performing different reactions simultaneously. In a situation 
where the enzyme is saturated by its substrates (which is a general assumption in 
MOMENT), this is not biochemically realistic: if an enzyme is involved in two or more 
alternative reactions, then we have to partition the cellular amount of the enzyme between 
the different reactions at any given moment. We thus modified the MOMENT algorithm 
accordingly. Whenever a protein was involved in more than one reaction, we introduced 
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auxiliary concentration variables xi for each of these reactions. These xi replaced the 
global concentration variable  for the protein in the corresponding equation that limits 
the flux through this reaction based on the enzyme concentration. The sum of the xi is 
then equal to the total concentration of protein A included in the global enzyme solvent 
capacity constraint. Below, we refer to this modified model as MOMENT*. 

The most elaborate task in building a ccFBA model is collecting the turnover rates from 
databases (such as BRENDA [11] or SABIO-RK [74]), from primary literature, or 
through wet lab experiments. The function cfba_moment() converts an existing FBA 
model into a MOMENT/MOMENT* model. In addition to the FBA model, it expects a 
file with kcat values as input; missing values, which are the rule rather than the exception 
also for existing models [42, 43, 71], are replaced by the median of all available kcat 
values. The function returns a Sybil model structure sysBiolAlg [31]; this can be used for 
further processing or saved as a linear problem file. 

3.2 Results

3.2.1 Escherichia coli
To validate ccFBA against the original MOMENT implementation (kindly provided by 
the authors of [71]), we built a ccFBA model from the same E. coli FBA model, iAF1260 
[9], and with the same kcat values and molecular weights. As in the original 
implementation, we only used kcat values from experiments on E. coli enzymes to 
calculate the median kcat; the full kcat list used for the model also contains values of 
homologous enzymes from other species. To align the ccFBA model with the original 
MOMENT implementation, we also set the lower bound of the ATP maintenance 
reaction to zero. The maximal growth rates calculated with the ccFBA model (without the 
modification for multifunctional proteins) and the original MOMENT implementation 
agreed within 0.001 milliMol per gram dry weight per hour (mmol/gDW/h) for each of 
the 24 carbon sources listed in Table 2. 

524 reactions of the iAF1260 model are affected by multifunctional enzymes. The 
modified model including an explicit consideration of multifunctional enzymes led to 
substantially reduced growth rate predictions on all 24 carbon sources compared to the 
original MOMENT implementation (Table 2). This is due to the fact that in the original 
implementation, once one reaction pays the “price” for inclusion of the enzyme in Eq. 
(1), all other reactions catalyzed by the same enzyme effectively run “for free”. This 
artifactually allows much more total flux than when explicitly considering 
multifunctional enzymes. Depending on the carbon source, between 9.1%  and 21.7% of 
the reactions differ in their on/off state between the original MOMENT model and the 
MOMENT* model, which explicitly considers multifunctional enzymes (Figure 6). 
Although the MOMENT* model more faithfully reflects biochemical constraints, the 
correlation of predicted with experimentally measured maximal growth rates was slightly 
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reduced (Table 2). Note, however, that the predictive power of all model variants 
examined here is relatively low (Figure 2). Spearman’s  values for the different model 
variants listed in Table 2 are not statistically significantly different from each other (the 
95% confidence interval for Spearmans’ rank correlation between measurements and the 
original MOMENT model, for example, is 0.086 - 0.736). 

Figure 6 At least 10% of reactions show different activities between the original MOMENT iJO1366 model and 
the modified model considering multifunctional enzymes. The figures shows a histogram of the distribution of 

Jaccard coefficients across the environments representing 24 carbon sources examined in Adadi R, Volkmer B, 
Milo R, Heinemann M and Shlomi T [71]. For each experiment, this coefficient represents the number of 

reactions that are active (flux > 10-6) in one model but inactive (flux  10-6) in the other, divided by the number 
of reactions active in at least one of the models. 

The incorporation of cellular constraints on total enzymatic capacity (Eq. (1)) is an 
important step towards bringing FBA-type models closer to biological reality. The quality 
of such extended models depends strongly on the reliability and completeness of the 
information on enzyme turnover rates. We thus extended the kcat list of the original 
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MOMENT implementation by adding 117 turnover rates obtained from the BRENDA 
database [11] to the MOMENT* model. Using this extended model led to very similar 
predictions of maximal growth rates (Table 2), and the correlations between experimental 
growth rates and predictions are rather similar (  =0.412 with 513 kcat values vs.  =0.390 
with 630 kcat values). The predicted flux distributions were surprisingly different for 
several carbon sources: the lowest Jaccard coefficient for active reactions shared between 
the two predictions was 0.841, meaning that almost 16% of reactions changed their 
activity status when I refined the model through additional kinetic information. 

 

Figure 7 Predicted maximal growth rates for five different metabolic models (y-axis) show much less variation 
than experimentally measured maximal growth rates (x-axis). See Table 2 for model descriptions and data. The 
solid black line is the expected identity. 
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Figure 8 Flux distributions differ strongly between two genome-scale metabolic models for E. coli, iJO1366 [75] 
and iAF1260 [9]. The figures shows a histogram of the distribution of Jaccard coefficients across the 

environments representing 24 carbon sources examined in [71]. For each experiment, this coefficient represents 
the number of reactions that are active (flux > 10-6) in one of the two models but inactive (flux  10-6) in the 

other, divided by the number of reactions active in at least one of the models. 

To update the E. coli MOMENT* model, I also used ccFBA to convert the iJO1366 FBA 
model [75], which contains 2583 reactions and was reconstructed by the same laboratory 
as the iAF1260 model. I used the same 503 kcat values as in the original MOMENT E.
coli model. The maximal growth rates predicted with this model were again similar to 
those obtained with the MOMENT* model based on the older iAF1260 model (see Table 
2 for the correlation of predicted growth rates with experimental rates). The predicted 
fluxes differed strongly between the two E. coli models, however: the Jaccard 
coefficients for active reactions was <0.72 in each case (Figure 8), meaning that more 
than 28% of reactions changed from active to inactive or vice versa.  
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Table 2. Experimentally measured and MOMENT-predicted maximum growth rates (in mmol/gDW/h) for E.
coli on 24 different carbon sources. 

Carbon source MOMENT
[71]
(iAF1260,  
513 Kcat
values)

MOMENT* 
(iAF1260,  
513 Kcat
values,
MFP1)

MOMENT* 2

(iAF1260,  
630 Kcat
values)

MOMENT* 3

(iJO1366,  
503 Kcat
values)

MOMENT* 4

(iJO1366,  
621 Kcat
values)

WT 
experimental 
growth rate 
(Adadi et al, 
2012)

D-Glucose 0.508 0.266 0.260 0.512 0.495 0.66

Glycerol 0.511 0.264 0.259 0.501 0.488 0.47

Acetate 0.301 0.191 0.192 0.299 0.303 0.29

D-Fructose 0.499 0.263 0.258 0.502 0.486 0.54

Pyruvate 0.479 0.239 0.236 0.426 0.417 0.41

D-Galactose 0.492 0.261 0.256 0.498 0.481 0.24

L-Lactate 0.425 0.229 0.225 0.397 0.387 0.41

Maltose 0.496 0.265 0.259 0.509 0.491 0.52

L-Malate 0.469 0.244 0.236 0.438 0.418 0.55

Fumarate 0.462 0.243 0.240 0.437 0.427 0.47

D-Xylose 0.497 0.260 0.255 0.496 0.479 0.51

D-Mannose 0.489 0.262 0.257 0.499 0.483 0.35

Trehalose 0.511 0.268 0.262 0.519 0.502 0.48

D-Mannitol 0.463 0.255 0.251 0.475 0.464 0.61

D-Glucose_6-
phosphate

0.570 0.279 0.274 0.565 0.545 0.78

Succinate 0.448 0.245 0.241 0.443 0.431 0.50

D-Glucosamine 0.499 0.266 0.261 0.517 0.500 0.40

D-Sorbitol 0.481 0.259 0.255 0.489 0.476 0.48

D-Gluconate 0.515 0.264 0.258 0.507 0.487 0.68

D-Ribose 0.409 0.233 0.231 0.410 0.405 0.41

Guanosine 0.592 0.292 0.289 0.626 0.612 0.37

L-Alanine 0.434 0.236 0.233 0.433 0.424 0.24

2-Oxoglutarate 0.452 0.254 0.250 0.473 0.459 0.24

N-Acetyl-D-
glucosamine

0.521 0.271 0.267 0.536 0.520 0.61

Correlation with 
experimental 
growth rates5

0.473 0.412 0.390 0.412 0.375 -

1 MOMENT model as published in [71] with explicit consideration of multifunctional enzymes
(MFE)
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2 MOMENT model as published in [71] with MFE and 117 additional turnover rates obtained
from BRENDA [11]
3 MOMENT model based on the iJO1366 FBA model [75] with MFE, using the same 506 Kcat
values as in [71]
4 MOMENT model based on the iJO1366 FBA model [75] with MFE and 118 additional turnover
rates obtained from BRENDA [11]
5 Spearman’s rank correlation coefficient between MOMENT predictions and experimental
growth rates from [71].

It is striking that experimentally observed growth rates vary much more across carbon 
sources than the growth rates predicted with each of the model variants tested here. This 
failure of the models to adequately reflect natural growth rate variation is likely due to 
one of two possible problems. First, the kinetic information used to calculate the 
resources required for each individual reaction is incomplete and likely inaccurate; we 
could include kcat values for only just over a quarter of enzymatic reactions in the 
iJO1366 model (621 out of 2251). Non-preferred carbon sources are often catabolized by 
slow enzymatic reactions, so that impossibly high enzyme amounts would be necessary 
to achieve conversion rates comparable to preferred carbon sources such as glucose. If 
kinetic information is missing or inaccurate for such a rate-limiting enzyme, growth rate 
predictions will be artificially inflated.  

However, a second problem appears to be responsible at least for the overprediction of 
growth rates on galactose: an erroneous assumption of maximal growth rate in vivo. 
While galactose can be converted to glucose relatively efficiently, E. coli metabolism is 
transcriptionally regulated so as to not achieve a maximal growth rate [74]. It is currently 
unclear why this transcriptional response has evolved; only an understanding of the 
underlying selective forces could allow an improvement of the prediction power of first-
principles models such as those examined here. It has been suggested that non-optimal 
growth rates in E. coli are due to the overexpression of enzymes used in the current 
metabolic state, and by the expression of unused enzymes, possibly to prepare the 
metabolic system for an expected availability of preferred carbon sources (B. O. Palsson, 
personal communication)[76]. Thus, it is conceivable that the prediction of maximal 
growth rates could be significantly improved through knowledge on the cellular volume 
available for currently active metabolic enzymes. 

3.2.2 Saccharomyces cerevisiae
I also used ccFBA to build a MOMENT* model for the baker’s yeast Saccharomyces
cerevisiae, based on the iMM904 FBA model [77]. I obtained kcat values for 577 enzymes 
collected from the BRENDA database [11], which were compiled in [78, 79], plus 52 
manually curated values from BRENDA. Stoichiometries of enzymes were also found 
from BRENDA for about 250 enzyme complexes. I calculated enzyme molecular weights 
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from the yeast genome sequence available at NCBI (Saccharomyces cerevisiae S288c). 
To fix the constraint on total enzyme capacity, I assumed that  27% of the yeast biomass 
is devoted to enzymes, the same fraction as in E. coli [71]. Maximal growth rates on 19 
different carbon sources predicted with this model are listed in Table 3.  

Table 3 Predicted maximum growth rates for the yeast model on 19 different carbon sources 

Carbon source 
Growth rate 
(mMol/gDW/h) 

D-Glucose 0.717 

Glycerol 0.650 

Acetate 0.298 

D-Fructose 0.682 

Pyruvate 0.499 

D-Galactose 0.651 

L-Lactate 0.528 

Maltose 0.701 

L-Malate 0.594 

Fumarate 0.581 

D-Xylose 0.660 

D-Mannose 0.672 

Trehalose 0.714 

Succinate 0.627 

D-Sorbitol 0.720 

D-Ribose 0.694 

Guanosine 0.932 

L-Alanine 0.493 

2-Oxoglutarate 0.624 
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Chapter 4 sybilEFBA: An R package for expression based FBA

4.1 Introduction
Based on reasonable biological assumptions, flux-balance analysis (FBA) estimates 
steady-state flux distributions in metabolic networks without knowledge about kinetic 
parameters. It does this by maximizing a trait relevant for fitness (e.g., biomass yield) 
under biochemical and environmental constraints. However, solutions are not unique: 
several distinct metabolic flux distributions may result in the same biomass yield, and it 
is unclear which of them corresponds to the ‘real’ biological fluxes. Also FBA doesn't 
include biological process such as genetic regulation. One strategy to overcome these 
limitations is to assume a parsimonious use of cellular volumes and to limit metabolism 
through a constraint on the total cellular enzyme concentration, as explored in the 
previous chapter. Alternatively, regulatory constraints can be inferred from 
experimentally determined expression data. Different approaches for integration of gene 
expression data into constrained-based models have been developed[80, 81]. In this 
introduction, I present the main ideas of this area. 

4.1.1 Existing Expression based methods

4.1.1.1 GIMME(2008)
Gene Inactivity Moderated by Metabolism and Expression(GIMME) [82] requires three 
inputs: (1) a set of gene expression data; (2) a genome-scale metabolic model 
reconstruction; and (3) one or more Required Metabolic Functionalities (RMF) that the 
cell is assumed to achieve. The algorithm uses a threshold on expression data to indicate 
that reactions are inactive when the corresponding mRNA level is less that the specified 
threshold. Complex GPR rules are mapped by considering the maximum of two genes 
when the relation is AND (protein complexes) and the minimum of two genes if the 
relation is OR (isoenzymes). The algorithm generates a list of reactions in the network 
that are predicted to be active, and an inconsistency score that quantitatively classifies the 
disagreement between the gene expression data and the assumed objective function. The 
method was applied to the E. coli network iAF1260 [9] and to gene expression data from 
three different strains: wildtype, evolved to grow on glycerol, and evolved to grow on 
lactate [82]. Using a threshold can be problematic because the appropriate threshold 
value may vary depending on genes, conditions, or organisms [81]. 

4.1.1.2 E Flux(2009)
In this method [20], normalized expression levels were used to set upper bounds for 
fluxes. E-Flux was applied to Mycobacterium tuberculosis, the bacterium that causes 
tuberculosis (TB). E-Flux was used to predict the impact of 75 different drugs, drug 
combinations, and nutrient conditions on mycolic acid biosynthesis capacity in M.
tuberculosis, using a public compendium of over 400 expression arrays. The method 
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successfully predicted seven of eight known inhibitors of mycolic acid and some 
additional inhibitors that can be used to discover new drugs [20]. 

4.1.1.2 MADE(2011)
Metabolic Adjustment by Differential Expression (MADE) [83] avoids arbitrary 
thresholding by using a time series of expression measurements at time points i. MADE 
finds a sequence of binary expression states {x1,x2,...,xn}, xj {0,1} such that the 
differences between successive states (xi+1 xi) most closely match the corresponding 
differences in the expression levels di i+1. MADE uses the statistical significance of the 
differences to create the most probable approximation. MADE was used to generate a 
series of models that reflect the metabolic adjustments seen in the transition from 
fermentative to glycerol-based respiration in Saccharomyces cerevisiae. The calculated 
gene states match 98.7% of possible changes in expression, and the resulting models 
capture functional characteristics of the metabolic shift [83]. MADE can also be applied 
to a set of multiple expression measurements that are not part of a time series. 

4.1.1.3 tFBA(2011)
The basic assumption of tFBA [63] is that if the activity of a gene drastically changes 
from one condition to the other, the flux through the reaction controlled by that gene will 
change accordingly. Up/down constraints are used and the algorithm is allowed to violate 
them to account for posttranscriptional regulation. One big LP is formulated to find the 
flux state under a set of conditions simultaneously. The authors were able to predict the 
fluxes of nine conditions for Saccharomyces cerevisiae. The problem becomes very 
complex and computationally expensive when the number of conditions is large [63]. 

4.1.1.4 Lee(2012)
Lee and coworkers [84] used absolute gene expression data to form a new objective 
function which is the absolute difference between the expression level and the 
corresponding flux, weighted by the inverse of the measurement error. The authors were 
able to predict measured fluxes with a good correlation under two conditions in 
Saccharomyces cerevisiae, using the yeast model 5 [85] in their simulations. These 
results were better than those of GIMME and standard FBA. As in other approaches, the 
mapping from GPR to reactions was made by converting AND to the minimum and OR 
to the sum of the involved enzymes [84]. 

4.1.2 Overview of chapter 4
The listed existing methods for expression-based FBA have several shortcomings. Most 
importantly, they do not explicitly account for differences in the relationships between 
reaction rates and protein (let alone mRNA) expression levels. Below, I propose two 
different ways to deal with this issue. In 4.2, I develop FECorr, a method that determines 
a linear relationship between fluxes and mRNA levels for each reaction. In 4.3, I propose 
ATM-FBA, a method based on the automatic identification of optimal thresholds, which 
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effectively assigns individual thresholds for each reaction by scaling mRNA expression 
levels with kcat . Another potential problem of existing expression-based methods is that 
they score discrepancies between reaction and gene activities based on the number of 
conflicting reactions rather than the number of conflicting genes. In 4.4, I propose 
eFBA_gene, a method that focuses on gene discrepancies. 

Kim et al [81] suggested four criteria to compare different methods that use gene 
expression data to enhance FBA predictions. Table 4 shows these features for the three 
methods proposed here as well as the previous methods outlined above. 

 

Table 4 Four essential features of eFBA methods. 

Method

Requirements
for multiple
transcription
datasets as
input

Requirement
for a threshold
to define a
gene's
high/low

Requirement for a
priori assumption
of an appropriate
objective function

Validation of
predicted fluxes
directly against
measured
intracellular
fluxes

E Flux No No Yes No

Lee No No No No

GIMME No Yes Yes No

MADE Yes No Yes No

tFBA Yes No Yes No

FECorr Yes No Adjustable Yes

eFBA_gene No Yes Adjustable Yes

ATM FBA No No Adjustable Yes

4.2 FECorr Algorithm
We propose an FBA variant that uses additional gene expression data to select among 
alternative flux distributions (Figure 9). In contrast to a variants of the FBA scheme that 
considers ON/OFF expression status (e.g., [86]), we account for expression data 
quantitatively. To obtain a scale linking flux values to gene expression levels (as 
measured, e.g., by microarray experiments), we start with a flux variability analysis 
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(FVA)[27] for each reaction under a range of assayed conditions. We then find a best 
piece-wise linear fit between the resulting flux ranges (which encompass fluxes that all 
support maximal biomass yield) and measured expression levels across conditions. In a 
given condition, this relationship is then used to assess the agreement of flux distributions 
predicted from quantitative gene expression data with all flux distributions consistent 
with maximal biomass yield (FBA solutions). The FBA solution with minimal distance to 
expression-predicted fluxes is considered to be close to the biologically realized flux 
distribution. To account for metabolic states with non-optimal yield, we can constrain our 
solution space to all flux distributions consistent with a certain minimal percentage of 
maximal yield instead of requiring 100% of the maximal possible yield. The individual 
stages of the algorithm are described in detail below.  
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Figure 9 Overview of FECorr Algorithm 
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4.2.1 Run FVA:
For each experimentally assayed nutrient condition, run FVA to get 

ranges of possible fluxes under the given environmental condition(s), with the 
additional constraint that biomass production is at least a certain fraction b of its 
maximal rate, , where the default value is b=1. Blocked reactions will 
be excluded.  

4.2.2 Fit a piecewise linear function:
As shown in figure 10, for each reaction, we search a piecewise linear 

function that relates flux values to gene expression levels across environments 
while respecting the previously determined FVA ranges where possible. 
Especially in microarray experiments, low but nonzero values of reported 
expression levels often occur even if the mRNA is not expressed; similarly, low 
values in RNA-seq data may correspond from spurious transcription rather than 
to biologically meaningful protein expression. Thus, the proposed relationship 
between measured expression level and flux consist of two parts: all expression 
levels up to a point E0 are considered to correspond to zero flux, while we 
assume a linear relationship between flux and expression from E0 onwards 
(Figure 10). This function thus has two parameters: E0 and the slope of the line 
starting at E0. In this description, I assume for simplicity that each reaction is 
catalyzed by only one enzyme; below, I explain how to adapt this procedure for 
more complicated GPR rules. 

 The cost function used for fitting this function is : 

  

For reversible reactions, there will be three cases: if both Vmin and Vmax 
are positive, then the range will be [Vmin,Vmax]; if both are negative, we will 
consider the reverse direction of the reaction and set the range to [-Vmax,-Vmin]; 
finally, if the signs of Vmin and Vmax are different, the range will be [0, 
max(Vmax,-Vmin)]. We used the R function nlm to find the equation of the best 
fitting line according to our cost function, using the following parameter settings: 
ndigit =15, gradtol = 1e-10, and steptol = 1e-10. The convergence time is very 
short: the function converges mostly within 10 iterations. As a starting solution 
we use the lm function with the Vmin points as input. 
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Figure 10 Fitting a piecewise linear function to FVA ranges. Each vertical line marks the FVA range of this 
reaction in one assayed nutrient condition; the position of the line on the x-axis marks the experimentally 

determined expression level of a protein associated with this reaction. The circles mark the intersection points 
between fitted line and FVA ranges 

 

4.2.3 Find closest flux distribution:
According to FBA, each point within the FVA range of a given reaction is equally valid 
as part of a condition-dependent metabolic state. We propose that approximations to the 
biologically realized flux value can be read off the piecewise linear function fitted to 
these ranges across conditions. Thus, we use these points (the circles in Figure 10) to find 
the flux distribution that most closely matches the experimentally determined expression 
levels.  

For each condition, the predicted flux values in this condition from all reactions are 
considered together; I then find a point in the solution space of the FBA problem that is 
closest to these points while producing the desired amount of biomass. This solution is 
the flux distribution predicted by FECorr.  

Formally, the linear problem solved is as follows: 
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where  is the set of predicted fluxes for each individual reaction from the 
piecewise linear function (the circles in Figure 10),  is the stoichiometric matrix,  is 
the vector of lower bounds,  is the vector of upper bounds, is the value of the 
objective function in the FBA solution, b is the desired fraction of this value to be 
achieved by the solution (default b=1), and  is the vector of objective coefficients. The 
problem is converted into an LP problem by adding two auxiliary variables for each 
reaction. 

 
4.2.4 Mapping gene expression to reactions
The above description assumes that each reaction is catalyzed by only one enzyme. To 
account for more complicated GPR rules, the function gene2Rule() maps gene expression 
values to reactions. Gene expression levels are summarized across all genes that feature 
in a given GPR association; the piece-wise linear function introduced above is then fitted 
to this aggregated reaction expression level. 

 

The rules used to account for complex GPR associations in FEcorr are as follows: for one 
to one relations, we directly use the flux value predicted from the expression level as 
outlined above. For protein complexes (GPR relations with only ANDs), the aggregated 
reaction expression level is assumed to be the minimum of all individual gene 
expressions. For isoenzymes (relations with only ORs), the aggregated reaction 
expression level is taken to be the sum of all gene expression levels of the constituting 
genes. For multifunctional enzymes, the resulting expression is divided by the number of 
reactions catalyzed by this enzyme; however, this option can be disabled because 
sometimes the number of repetitions is big and this makes the expression value very 
small. For complex GPR relations that include ANDs and ORs, the rules are applied 
recursively. To facilitate these recursions, GPR rules are expected in the canonical form 
termed Sum-of-products (SoP; in the language of logical circuits: AND to OR). 

4.2.5 Applying FECorr
To test FECorr, I used a compendium of yeast (S. cerevisiae) experiments consisting of  
170 microarrays under 55 conditions that vary 9 environmental parameters (Aeration 
type(2 types), Carbon source(5), Nitrogen source(7), Sulfur source(2), Limiting 
element(6), Growth rate(4), Temperature(2), pH(3), Protocol(2)) [87]. For the 
calculations, I used the metabolic model iMM904 [67]. I used 11 cultivation conditions 
(Table 5), as the other conditions reflect environmental changes that cannot be modeled 
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using FBA (temperature, pH, etc.). The 11 conditions used differ in aeration type, 
limiting element, and carbon source.  

 

 

Table 5 The conditions used in simulations 

Abbreviation Aeration Limiting 
Nutrient 

Carbon Source 

AE-AC-C lim Aerobic Carbon Acetate 
AE-Etoh-C lim Aerobic Carbon Ethanol 
AE-GLC-C lim Aerobic Carbon Glucose 
AE-GLC-P lim Aerobic Phosphate Glucose 
AE-GLC-S lim Aerobic Sulfur Glucose 
AE-GAL-C lim Aerobic Carbon Galactose 
ANAE-GLC-C 
lim 

Anaerobic Carbon Glucose 

ANAE-GLC-N 
lim 

Anaerobic Nitrogen Glucose 

ANAE-GLC-P 
lim 

Anaerobic Phosphate Glucose 

ANAE-GLC-S 
lim 

Anaerobic Sulfur Glucose 

AE-GLC-N lim Aerobic Nitrogen Glucose 
 

Figure 11 illustrates the effect of FECorr for a single reaction, R_TPI, which is catalyzed 

by the product of a single gene, YDR050C. For the FBA solution returned by CPLEX, the 

Pearson correlation between fluxes and expression levels across conditions was R2=22%. 
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With FECorr, this correlation was improved to R2=80%. 

 

Figure 11 FECorr improves the correlation between flux and expression level for the R_TPI reaction from 
R2=22% for FBA (blue circles) to R2=80% for FECorr (black dots). The green bars show the flux variability in 

each condition. Red dots are the predictions from the piece-wise linear model. 

 

Machado et al [80] evaluated different expression-based methods. They used in their 
comparison the normalized error, defined as the normalized Euclidean distance between 
experimentally determined and predicted flux vectors: 
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Here,   is the vector of flux measurements, while the components of  are the 
predicted (simulated) flux values. For a series of evaluations for the same method across 
different experiments, the average error is given by the mean of the error across 
experiments. Machado et al. applied their measure to data from three different 
experimental studies: those of Holm et al. from 2010 [88], Ishii et al. from 2007 [89], and 
Rintala et al. from 2009 [90].  

The experimental setup of Holm et al [88] consisted of E. coli strains growing aerobically 
in batch cultures. The dataset contains measurements of genome scale gene expression 
using microarray analysis, as well as flux measurements from metabolic flux analysis 
(MFA), derived using 13C-labelled metabolites . The dataset contains three wild-type E.
coli (REF) as well as two over-expression mutants, one for NADH oxidase (nox) and one 
for the F1-ATPase atpAGD (ATP).  

I used the same model iAF1260 [9] as used in Ref. [80]; as done for all methods, I 
applied the measured uptake of glucose consumption in each condition as a constraint 
and set all default uptake reactions in the model to -1000. As shown in Figure 12, I 
found that application of FECorr results in a smaller average error (0.378) than all gene 
expression-based methods examined in Ref. [80], and performs slightly better than pFBA 
(which gives 0.385).  

When I additionally constrained all measured uptake and excretion rates for each method, 
I found a similar picture (Figure 12B): FECorr predictions resulted in a somewhat smaller 
error (0.36) than pFBA (0.42); only the method of Lee et al. [84] resulted in smaller 
normalized errors than these two methods. 

The experimental set up of Ishii et al[89] consists of E.coli strains growing aerobically in 
batch cultures. The dataset contains measurements of gene expression, protein level and 
metabolic fluxes under 5 growth conditions and 24 mutants. 

The experimental set up of Rintala et al [90] consists of Saccharomyces cerevisiae 
growing in 5 different oxygen levels. 
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Figure 12 Boxplots of normalized prediction errors of different expression-based methods for the 3 datasets 
analyzed in Ref. [80]. (A). Data from Holm et al. [88], constraining only the glucose uptake rate to the measured 
value. (B) same data, but additionally constraining all other measured uptake and excretion rates. (C) Data from 
Ishii et al. [89], constraining only the glucose uptake rate to the measured value. (D) same data, but additionally 
constraining all other measured uptake and excretion rates. (E) Data from Rintala et al. [90], constraining only 
the glucose uptake rate to the measured value. (F) same data, but additionally constraining all other measured 
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uptake and excretion rates. (G) Average normalized prediction errors across the three datasets, constraining 
only the glucose uptake rate to the measured value. (H) Average normalized prediction errors when additionally 

constraining all other measured uptake and excretion rates.  

As shown in Figure 12G and Figure 12H, FECorr performed substantially better on 
average than all other expression-based methods assayed by Machado et al. [80] when 
only constraining the glucose uptake rate. When constraining all measured uptake and 
excretion rates, two alternative methods (RELATCH [91], mean normalized prediction 
error E= 0.324, and GX-FBA [92], E= 0.329) performed slightly better than FECorr (E= 
0.3299); however, the necessary experimental data is only rarely available. Strikingly, 
pFBA performs slightly better than all expression-based methods in both situations (E= 
0.3022 when constraining only glucose uptake; E= 0.3095 when constraining all 
exchange fluxes). 

 

Indeed, one of the main conclusions of Machado et al. [80] was that pFBA, which does 
not use any expression information, predicted the measured fluxes with a smaller 
normalized error than all expression-based methods. However, it is noteworthy that 
pFBA was the only method that was given explicit information on the knocked-out 
reactions, which were constrained to zero flux in pFBA [80]. This additional information 
given to just one of the assayed algorithms may have biased the comparison towards 
pFBA. Furthermore, the calculations of flux values in MFA rely on a metabolic model 
that is interpreted with pFBA [89]. This may bias experimental errors in a direction 
favorable for pFBA predictions. 

4.3 Function ATMFBA

4.3.1 Scaling expression levels by kcat
The expected relationship between flux values and enzyme expression level depends on 
the reaction kinetics. In particular, the maximal flux of a reaction is given by the enzyme 
turnover number multiplied with the enzyme expression level , . Thus, 
I also scale gene expression levels by the corresponding  values. This is equivalent to 
having a separate expression level threshold for each gene.  

Scaling the measured gene expression by kcat improves the correlation between measured 
fluxes and gene expression across all reactions for each of  the E. coli growth rates 
assayed in [89] (Figure 13A). It also substantially improves the correlation between 
fluxes and gene expression for individual reactions across conditions  (Figure 13B). This 
is because a given concentration of enzymes with high kcat values can catalyze high fluxes 
and vice versa. Figure 13B shows that Pearson correlation between flux and mRNA 
expression across the 5 conditions is >0.8 for almost all assayed reactions. This also 
suggests that eFBA methods that use information from more than one condition may give 
better predictions. 
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Figure 13 Correlations between measured fluxes and mRNA expression for E. coli [89] are improved by scaling 
with kcat. (A) Correlation across different reactions for five different growth rates. (B) Histogram of the 

distribution of Pearson correlation coefficients calculated for individual reactions across the five growth rates. 

4.3.2 Optimization of activity thresholds
Some methods use predefined thresholds to indicate if a reaction is active or not in the 
model (e.g., iMAT[93] uses a flux threshold of 1 mM/gDW/h) and another threshold to 
indicate if a given gene is active or not in the experiment (gene activity threshold). Gene 
activity thresholds are typically given as quantiles of the expression level distribution; 
sometimes, two thresholds with an intervening “undetermined” region are used [82]. 
Here, I introduce a method that finds the best thresholds, defined as those that minimize 
the deviation between GPR state and reaction state.  

The optimization problem is formulated as a MILP problem, with the thresholds as 
additional variables, gene expression threshold Tg and flux threshold Tf. These two 
variables can be bounded to a predefined range given as input to the simulation. GPR 
rules are modeled as linear constraints with binary variables, where OR is modeled as a 
sum and AND is modeled as a minimum of two expressions. 

The minimized objective function is the discrepancy between the GPR state and the flux 
state. There are two types of discrepancy. The first is when the GPR state is ON (gene 
expression is high) while the reaction rate is low (<Tf); this is called “unused expression 
discrepancy”, and has an associated penalty unusedExprPenalty. The other type of 
discrepancy is when the reaction must carry significant flux while the measured 
expression of the GPR is lower than Tg. This is assigned a penalty 
InsufficientExprPenalty. As the unused expression discrepancy may be due to post-
transcription regulation, I set InsufficientExprPenalty > unusedExprPenalty.  

Error! Reference source not found.Figure 14 gives an overview over the ATM-FBA 
algorithm. The optimization problem is formulated as: 
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Because of overpredictions in reaction activities due to inaccuracies in expression 
measurements and posttranslational regulation, the solutions to this problem may contain 
spurious thermodynamically infeasible cycles. Thus, I apply the cyclefreeFBA algorithm 
to post-process the predicted flux distribution. Finally, I apply pFBA to the reactions with 
unknown expression state, i.e., I minimize the sum of absolute fluxes through these 
reactions while maintaining the post-processed flux prediction for reactions with known 
expression state. 
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Figure 14 Overview of ATM-FBA 
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model iAF1260 [9].  

Environmental conditions 

Formulate MILP problem 

Set Tg, Tf thresholds 

Boolean gene expression state: geneSt
i
= (geneExpr

i
>Tg) 

Boolean reaction activity state: rxnSt
r
= (v

r
> Tf ) 

Boolean GPR state: GPRst=f(geneSt)  

(OR mapped to sum , AND mapped to min) 

Minimize [ (GPRst < rxnSt)*InsufficentExprPenalty +  

(GPRst > rxnSt) * UnusedExprPenalty ] 

Gene expression 

(microarray) 

Get absolute flux ranges: minf, maxf 

(cycleFree) Flux
Variability Analysis 

stoichiometric model 

Solve MILP 

Remove cycles  

Apply pFBA to reactions with
unknown expression 



50

4.3.3 Results
Comparing ATM-FBA with methods benchmarked in [80] shows that ATM-FBA 
performed slightly better than other expression based methods (Error! Reference source 
not found.); benchmarking was performed as detailed in Section 4.2. 

  

 
Figure 15 boxplots of normalized prediction errors of different expression-based methods for the 3 datasets 

analyzed in Ref. [80]. (A). Data from Holm et al. [88], constraining only the glucose uptake rate to the measured 
value. (B) same data, but additionally constraining all other measured uptake and excretion rates. (C) Data from 
Ishii et al. [89], constraining only the glucose uptake rate to the measured value. (D) same data, but additionally 
constraining all other measured uptake and excretion rates. (E) Data from Rintala et al. [90], constraining only 
the glucose uptake rate to the measured value. (F) same data, but additionally constraining all other measured 
uptake and excretion rates. (G) Average normalized prediction errors across the three datasets, constraining 

only the glucose uptake rate to the measured value. (H) Average normalized prediction errors when additionally 
constraining all other measured uptake and excretion rates.  
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Figure 16 shows measured excretion rates of different metabolites in comparison to 
predictions with the expression-based methods and pFBA. Both ATM-FBA and pFBA 
massively overpredict the excretion of acetate. They both slightly over-predict CO2 
excretion. ATM-FBA also wrongly predicts excretion of formate. 

 

 
 

Figure 16 Measured (red) and predicted excretion rates of metabolites following [80]. 

 

 
 

4.4 eFBA gene
The last of the three methods I propose in this thesis aims to optimize the agreement 
between individual gene mRNA levels with predictions rather than optimizing the 
agreement between reaction states and GPR states derived from the mRNA data. If all 
GPR-rules are 1-to-1 correspondences between genes and reactions, both approaches are 
mathematically identical. However, if enzymes catalyze multiple reactions or if a reaction 
is catalyzed by an enzyme complex, the results should differ from each other. As 
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expression-based methods aim to minimize the discrepancy between expression data and 
predictions, and as expression data is collected per gene, it seems appropriate to also 
focus the optimization on genes. 

Thus, the aim of eFBA-gene is to select the solution that minimizes the conflict between 
the gene states implied by the resulting flux distribution and the measured gene 
expression. I consider three values of measured gene states: 1 for expressed; 0 for not 
expressed; and -1 for "don't care" (see below). The problem is formulated as a MILP 
problem with the following objective: 

Minimize    

where  is a gene in the model;  if  is expressed , else 0; and  
 if all reactions catalyzed by  have no flux (more precisely: if the absolute fluxes of all 

reactions catalyzed by g are below the pre-set threshold ), else . 

To formulate a new eFBA-gene problem, one needs to follow these steps: 

    1- add n new integer variables fi, where n is the number of reactions to be considered. 
fi, indicates if the corresponding reaction is carrying a significant flux (1) or is 
inactive (0). 

2- add ng new integer variables (gi) to represent predicted gene states, where ng is the 
number of genes in the model (gi=1 if the gene is predicted to be inactive, gi=0 if it 
is predicted to be active) 

    3- add new constraint for biomass (ensure a minimal fraction of the maximum biomass 
obtained from wildtype FBA)  

4- Add identifying constraints for 's as follows: 

for irreversible reactions  add the following two constraints (with M a large number, e.g., 
M = 1000): 

Constraint 1:  
Constraint 2:  
For reversible reactions: include additional binary variable yi and add the following four 

constraints:  

Constraint 1:  
Constraint 2:  
Constraint 3:  
Constraint 4:  
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5- Add linear constraints to represent Boolean GPR rules (see below for details). 
 
6- set new objective function if expression(gene i)=0 then add +gi to objective function 

else if expression(gene i)=1 add -gi; if expression(gi)=-1 ignore gi.  
     
The problem and the constraint matrix:  

minimize: (2ei-1)*gi 

 

      

identifying constraints 

Linear constraints of Boolean GPR 

      

                  

where ei =0 if gene i is NOT expressed and 1 if gene i is expressed and 0.5 if ignored, 
Z* is wildtype objective value, pct_obj is the percent of biomass to be achieved, and ub, 
lb are the wildtype problem upper bounds and lower bounds respectively. 

To make the problem smaller and more efficient, we can select a subset of reactions for 
which gene states are optimized, ignoring all other reactions. FVA is calculated for the 
set of chosen reactions (or, if no subset has been selected, for all reactions with GPR 
rules). The reactions with fixed state flux are excluded (note that this strategy cannot 
reduce the problem size unless a fixed biomass production is demanded) 

Then the Boolean GPR rules are converted to linear constraints in a similar way to [94]. I 
assume that the GPR rules are in disjunctive normal form(DNF) as SUM of PRODUCT 
(AND to OR), without NOT, one level. The following rules are used: 

A= B AND C      0  b+c-2a 1 

In general, if  

 

(straight ANDs), the linear constraint will be:  

 

And if  
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(straight ORs), the linear constraint will be:  

 

For complex rules, auxiliary integer variable are added for each term. For example, if the 
GPR rule is  

(g1 AND g2) OR (g3 AND g4), 

then two auxiliary variables are added:  

Aux1= g1 AND g2  

Aux2= g3 AND g4 , 

and then the result is  

Aux1 OR Aux2. 

To illustrate the difference between the eFBA-gene strategy and the alternative of 
considering reaction states, consider the three reactions (R1, R2, and R3) in Table 6. The 
two solutions Solution1 and Solution2 will be favored differently by the two schemes. In 
a reaction-centered approach, Solution1 (with 1 conflict) will be favored over Solution2 
(with 2 conflicts). In eFBA-gene, Solution2 will be favored instead, as it affects more 
reactions, but fewer genes. 

Table 6 Difference between  eFBA_gene and the alternative of considering reaction states  objective functions 

Reaction  Rule  Solution 1  Solution 2  Gene State  

R1  g1  ON  OFF  Present  

R2  g2  ON  OFF  Present  

R3  g3 & g4 & g5  OFF  ON  All Present  

Conflicts(rxn)    1 2   

Conflicts(gene)    3 2   
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Application to the Holm dataset
I applied eFBA_gene to the dataset of Holm [88] described above. Figure 17 shows a 
histogram of the gene expression levels. I tried different values for the gene expression 
threshold Tg. The minimum value of gene expression in this dataset is 2.23 and the 
maximum is 15.25. Thus, at Tg 2.23, all genes are considered to be expressed (ON), 
while at Tg 15.25, all genes are considered not expressed (OFF). Note that considering 
all genes to be not expressed, e.g., by setting Tg =16 can be a good approximation, as it 
results in a solution with a minimal number of active reactions; this is very similar to 
requiring a minimum total flux, as done in pFBA. 

 

Figure 17 Histogram of gene expression levels from Holm dataset. 

The second parameter that needs to be set for the application of eFBA-gene is the flux 
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(Tg=16) also gives a good approximation. Comparing the results for the best parameter 
combination to those of other expression-based methods (see Figure 12 above),  I find 
that eFBA-gene can deliver better results than pFBA and all other expression based 
methods that were applied to this dataset. 

The results shows also that considering all genes to be not expressed(Tg=16) can be a 
good approximation as it is analogous to solution with minimum cost or minimum total 
flux. The best result below is better than pFBA and all expression based methods that 
were applied to this dataset. 
 
Shlomi et al 2008 [95] used flux threshold (Tf) of 1. 

Table 7 Applying eFBA_gene with different parameter values, normalized error of predicted and measured 
fluxes from  Holm dataset 

Tg\Tf 0.0001 0.001 0.01 0.1 1 % genes ON
2 0.308 6.472 6.142 14.683 26.512 100.00
3 0.371 8.825 0.524 6.337 0.495 98.88
4 0.697 8.824 0.524 6.337 0.495 98.32
5 6.310 0.317 14.681 0.277 4.456 97.31
6 0.402 0.296 8.848 6.130 4.457 95.26
7 12.252 0.279 0.286 0.288 12.992 90.07
8 12.157 6.143 0.288 0.294 4.454 81.51
9 0.280 0.301 0.277 12.155 6.139 69.84

10 12.119 0.273 0.26955 0.271 12.118 51.15
11 0.273 0.273 0.273 0.273 0.304 31.29
12 0.301 0.269505 0.297 0.270 0.310 13.19
13 0.301 0.269512 0.26956 0.270 0.289 4.38
14 0.297 0.297 0.297 0.296 0.291 1.40
15 0.297 0.297 0.297 0.297 0.289 0.14
16 0.297 0.297 0.297 0.296 0.290 0.00
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Chapter 5 Discussion, Conclusion and future work
In this thesis, I proposed, implemented, and tested a broad range of algorithms for the 
improvement of constraint-based analysis of metabolic networks. These algorithms deal 
with three main topics: (1) calculating thermodynamically feasible FBA solutions; (2) 
applying cost/capacity concepts to FBA; and (3) using  gene  or protein expression data 
to improve FBA predictions. For each of these topics, I have implemented the proposed 
algorithms in an R package.  

Each of the proposed algorithms represents a first step into a novel direction, and a 
number of further steps and improvements are conceivable. In this section, I will 
summarize my results, discuss the new methods in relationship to previous work, and 
outline the most important suggestions for next steps. 

5.1 loopless FBA

5.1.1 Alternative methods to calculate thermodynamically feasible solutions
The CycleFreeFlux algorithm described in Chapter 2, as well as the two major alternative 
strategies, MTF [26] and ll-FBA [37], each put out one thermodynamically feasible flux 
distribution. However, these algorithms are not directly comparable, as they differ in both 
their goals and their inputs. MTF delivers very special flux distributions, which minimize 
the total sum of absolute fluxes , constrained only by the optimal value of the 
objective function. In contrast, CycleFreeFlux takes any given steady-state flux 
distribution (which may or may not be the result of an FBA calculation) and reduces it to 
its loopless contribution. Finally, ll-FBA solves an FBA problem such that the resulting 
flux distribution already lies in the thermodynamically feasible subspace. Given that the 
MTF flux distribution will often be biologically more realistic than many alternative 
solutions to an FBA problem [17], MTF (parsimonious FBA) should be the method of 
choice when just one thermodynamically feasible solution to an FBA problem is 
required. In contrast, CycleFreeFlux and ll-COBRA provide means to characterize the 
full space of thermodynamically feasible (optimal) steady-state solutions. 

5.1.2 Runtime comparisons
CycleFreeFlux requires one additional linear optimization and is thus comparable in 
speed to MTF. In contrast, ll-FBA requires solving a MILP problem and thus has a much 
longer (and in practice unpredictable) runtime. The CycleFreeFlux functions for the 
generation of thermodynamically feasible random flux samples and flux variability 
analyses are thus orders of magnitude faster than previously available algorithms. The 
only exception is an independently developed strategy for thermodynamically feasible 
FVA that uses similar concepts to CycleFreeFVA [69]; we only became aware of this 
work after the publication of the CycleFreeFlux paper [61]. 
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5.1.3 Biases introduced by CycleFreeFlux
CycleFreeFlux solutions are biased towards solutions that run in the same direction as 
internal cycles with which they overlap and towards solutions with lower total flux  

whenever alternative decompositions into elementary modes exist; in many 
applications, these biases will not be important. It is noteworthy that other methods to 
calculate thermodynamically feasible solutions, such as pFBA and ll-COBRA, also 
introduce similar biases. 

5.1.4 Conclusion
The CycleFreeFlux algorithm and its extensions allow the reliable identification and 
exclusion of thermodynamically infeasible internal cycles from different types of 
constraint-based analyses. Thus, it may improve predictions in any application that 
requires the estimation of flux ranges. 

For example, O'Brien et al [96] used FVA to predict biological capabilities, and the use 
of CycleFreeFlux would improve such predictions. CycleFreeFlux could also be applied 
to Flux Coupling Analysis (FCA)[97]: this could improve results, as the existence of 
internal cycles can mask some coupling relations.  

Among further possible applications of CycleFreeFlux is calculating ranges of fluxes for 
FECorr. Internal cycles would give thermodynamically infeasible ranges for the reactions 
involved, potentially resulting in overestimates of the flux-expression relationship. 
Another important application may be the estimation of maximal fluxes, e.g., to develop 
improved methods to predict flux distributions in knockout mutants: it was recently 
suggested to penalize relative rather than absolute flux ranges in MOMA (Guido 
Przygoda, personal communication); for reactions that are inactive in the wild-type, a 
maximal flux can be used instead. Here again, internal cycles could lead to overestimates 
of maximal fluxes.  

We implemented functions for cycleFreeFlux calculations as an extension package for 
sybil [31], which are freely available from CRAN (http://cran.r-
project.org/web/packages/sybilcycleFreeFlux/). 

5.1.5 Future work
Currently, cycleFreeFVA is about 10 times slower than standard FVA as performed by 
Sybil. The performance of cycleFreeFVA can be further improved by using advanced 
features of linear solvers, such as calculating the basis of the linear problem once and 
using it in all the simulations, as the constraint matrix does not change between 
simulations. This can save the overhead of rebuilding the problem thousands of times. 
One way to implement this would be to perform the simulations using Sybil's lower level 
class sysBiolAlg instead of the modelorg class.  
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Currently, the enumerateCycle function is not capable of identifying all internal cycles in 
the Homo sapiens reconstruction Recon1 [70]. Progress may be achieved by adding a 
preprocessing step as proposed by Wright and Wagner [36], which reduced the model to 
a submodel that contains only reactions in nontrivial loops. 

5.2 Cost constrained FBA

5.2.1 A general framework to incorporate solvent capacity constraints into
FBA
One of the major strengths of FBA is that it can predict many phenotypes correctly 
without requiring knowledge on enzyme kinetics. However, there are a range of 
metabolic phenomena that cannot be modeled in this framework, such as the Warburg 
effect observed in many cancer cell lines [46, 98] and the Crabtree effect in yeast cells 
grown on abundant glucose [45], or the evolution of crossfeeding in originally mono-
clonal bacterial populations [48]. Such phenomena are likely a result of compromises in 
proteome allocation due to the limited solvent capacity of the cell [99, 100]; their 
explanation requires the inclusion of enzyme kinetics and cellular volume (or 
concentration) constraints into FBA.  

ccFBA (capacity-constrained flux balance analysis) allows to convert any complete FBA 
model into a model that incorporates enzyme kinetics and cellular constraints on total 
enzymatic capacity. Building on the algorithmic developments in [42, 43, 71], ccFBA 
facilitates the application of refined constraint-based analysis methods to metabolic 
systems beyond E. coli. The sybilccFBA package for sybil [31] is freely available from 
CRAN (http://cran.r-project.org/web/packages/sybilccFBA/). 

A recent study demonstrated experimentally that overflow metabolism is indeed a 
consequence of proteome allocation constraints, but argued that this is due to optimal 
investment into protein production rather than constraints on protein volume such as 
those discussed in this thesis [101]. However, the reasoning leading to this conclusion 
appears flawed. Cellular volume is irrelevant for the calculation of growth rates as long 
as intracellular concentrations and biomass composition remain constant: a cell of half 
the size has half the amount of enzymes, which need to produce half the amount of 
biomass. Thus, the constraints used in MOMENT* and other approaches that account for 
the limited cellular volume are really constraints on concentrations, accounting for the 
limited solvent capacity of the cell [99, 100]. Furthermore, protein allocation constraints 
do not predict a maximal growth rate at unlimited nutrient concentrations, which 
contradicts experimental evidence. 
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5.2.2 Comparison of ccFBA to other algorithms that include solvent capacity
constraints
The first application of amolecular crowding constraint to FBA, FBAwMC, did not 
include explicit GPR rules, in contrast to MOMENT and MOMENT*. ccFBA includes 
appropriate constraints for multifunctional enzymes, while this is not modeled correctly 
in MOMENT [71].  

An alternative implementation of molecular crowding constraints is found in the ME 
(Metabolism-Expression) models of the Palsson group at UCSD [82, 102]. These models 
explicitly account for the translation and transcription machinery depending on the 
protein expression necessary to catalyze the active reactions. While powerful, ME models 
are much more complex, require more parameters, and need more time both for their 
reconstruction and for their solutions than the methods developed in this thesis.  

 

5.2.3 Shortcomings of ccFBA and related approaches
A comparison between predicted and experimentally measured growth rates shows that 
all current E. coli models fail to predict the true breadth of utility of different carbon 
sources; this is also true for more complex models such as that in [102], unless the space 
available for enzymatic reactions and their activity are adjusted based on transcriptomic 
or proteomic data for each carbon source [76]. This indicates that not only reliable kinetic 
information is needed for many more reactions than currently available, but that we also 
need a better understanding of the selective forces that lead to the under-utilization of 
certain carbon sources such as galactose [103]. I expect that the prediction power of 
ccFBA models will grow substantially once reliable genome-wide estimates of kcat

become available, and once we achieve a quantitative understanding of the bet-hedging 
strategies that may underlie the under-utilization of unpreferred carbon sources. 

5.2.4 Future work
The current model accounts for the limited intracellular solvent capacity. However, a 
similar limit exists for the protein density in cellular membranes, constraining the 
maximal density of transporters on the cellular surface [104]. E.g., at low substrate levels, 
E. coli invests a large amount of cellular resources into transporters, which is not the case 
at high substrate concentrations. Thus, extensions of MOMENT* should include the cost 
and the density constraints on transporters. 

A major limitation of all methods that aim to incorporate protein production costs and/or 
solvent capacity constraints is the limited availability of kcat values. Some improvement 
may be achieved by not substituting the median kcat for all unknown values, but to 
instead use statistical techniques such as machine learning to predict kcat from protein 
and reaction properties, such as amino acid composition [105] and EC-numbers; first 
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steps in this direction have been performed [106], but further work is needed before such 
methods can be applied to genome-scale models. 

The limited solvent capacity does not only constrain protein concentrations, but 
simultaneously constrains metabolite concentrations (Hugo Dourado, personal 
communication). Including full Michaelis-Menten kinetics and additional variables for 
metabolite concentrations may thus further improve the predictive capabilities of 
MOMENT* and related approaches. 

So far, I only explored using an enzyme capacity constraint in FBA. However, the same 
constraint of course also affects other types of constraint-based algorithms. Thus, ccFBA 
should be extended to update a wide range of popular constraint-based analyses, such as 
MOMA [28] and FVA [27]. Furthermore, the efficient application of ccFBA would 
benefit from algorithmic optimizations such as implemented in the oneGeneDel() 
function of sybil [31].  

Of particular practical importance might be a tool for curating cost-constrained models, 
targeted at researchers that build organism-specific models. For example, the metabolic 
network could be imported from the SBML format and stored in a local database. Each 
user might have an account to keep track of his or her projects. The tool will allow to run 
simulations using sybil and its derivatives. The tool also will store parameters of the 
network (kcat, MW, Km,...). Models can be exported to JSON [107], SBML [4], or as 
CSV lists.  

A major limitation to the application of cost-constrained models is the availability and 
reliability of kinetic parameters. Systematic efforts are necessary to curate curate the cost 
parameters for genome scale models such as the yeast model (iTO977). One would track 
the Kcat, Km, complex stoichiometry, and number of active sites from original 
publications, starting from a local database downloaded from BRENDA (2012) and/or 
SABIO [74] repositories. The parameters can be curated using sybilccFBA to calculate 
the minimal required protein expression in different growth conditions and checking if 
the corresponding enzymatic volume is realistic; for several reactions, I found that data 
obtained from BRENDA resulted in unrealistically large volumes required for individual 
reactions (data not shown). The resulting curated dataset will not only be useful for 
ccFBA, but can also be employed for other types of cost-constrained models such as ME-
models [102]. 

Obvious avenues of further research are the application of sybilccFBA to make 
quantitative predictions for the wide range of phenomena that cannot be addressed with 
FBA, such as overflow metabolism (including the Crabtree and Warburg effects) and the 
evolution of crossfeeding in E. coli. All current cost-constrained methods make 
predictions for the growth of E. coli on Galactose and Oxoglutarate that differ 
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substantially from observed growth rates [103]; it would be highly interesting to examine 
if these discrepancies can be removed by correcting kinetic parameters in the model or by 
including metabolites into the solvent capacity constraint. Finally, ccFBA could be 
extended into a version of dynamic FBA [108] (implemented in sybilDynFBA) to 
simulate the progressive consumption of multiple sugars and compare the corresponding 
predictions with gene expression time series (Beg et al 2007). 

5.3 Expression based FBA
In recent years, many algorithms were proposed to achieve better FBA predictions using 
gene expression or other types of omics data. I proposed three methods to include 
transcriptomic or proteomic data to get better FBA predictions and implemented them in 
the sybilEFBA package for sybil [31], which is also available on CRAN (http://cran.r-
project.org/web/packages/sybileFBA/). 

5.3.1 FECorr: deriving quantitative flux expression level estimates from data
across experiments
In the first method, FECorr, I used quantitative expression data from multiple 
experiments across different conditions. The method tries to fit a linear relation between 
FBA-predicted fluxes and the corresponding gene expression data. I applied the method 
to a dataset that had previously been used to compare different expression based methods 
[80]. The results showed that my method gave a slight improvement over the previous 
methods, although, surprisingly, it was still not better than pFBA. It is known that gene 
expression data is noisy, and this may be one of the reasons why all methods based on 
such data perform poorly. Other problems in gene expression data include the necessary 
normalizations and the different sequence features of genes that affect the expression 
signals. Expression-based methods may give better results if proteomics data were used, 
but quantitative proteomic data is not widely available. Finally, mapping gene expression 
data on individual reactions is not an easy task because of complex relationships between 
genes and reactions, due to the existence of isoenzymes and multifunctional enzymes, as 
well as the formation of protein complexes.  

5.3.2 ATM FBA: automatic thresholding for reaction and protein activities
The second novel method is ATM-FBA. In this method the thresholds for gene 
expression and flux are variables that are optimized in a MILP problem. The method was 
applied to the benchmark dataset in Machado et al [80]. The solution is much slower than 
FECorr, which can be solved by linear programming. To increase the speed of ATM-
FBA, a flux variability calculation is applied in a preprocessing step to exclude fixed 
reactions from the MILP and hence make the problem much smaller.  

In other expression-based methods, thresholds to distinguish active from inactive 
enzymes and reactions are arbitrarily set by the user. This not only makes the solutions 
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dependent on subjective decisions, but also leads to sub-optimal predictions. This may 
explain at least in part the superior performance of ATM-FBA. 

Genes with large kcat will be effective when expressed at low amounts, while genes with 
small kcat will have to be expressed at high levels to get significant flux. If we assume that 
all enzymes are saturated, then fluxes should equal enzyme expression level multiplied 
by kcat. Thus, scaling gene expression by kcat values makes expression levels for different 
genes comparable.   

 

5.3.3 eFBA gene: reconciling gene rather than reaction activities with
expression data
The third novel method introduced in this thesis that utilizes gene expression data is 
eFBA-gene. It differs from previous methods, including those proposed in this thesis, by 
penalizing disagreement between experiment and predictions based on individual genes 
rather than based on individual reactions. To this end, the GPR rules were converted to 
linear constraints in a MILP problem with the objective to find the point in the solution 
space that is closest to the input gene expression data in terms of gene states. When the 
method was applied to the benchmark dataset, it gave results that were better than pFBA 
and other gene expression methods in terms of the normalized error between predicted 
and measured fluxes when optimal values were chosen for the gene and reaction activity 
thresholds. However, choosing the appropriate thresholds may be difficult. The predicted 
fluxes range from 1e-6 to about 100, and it appears thus unlikely that using a single 
threshold for all reactions is appropriate. 

Furthermore, the distinction between expressed and non-expressed genes may be too 
coarse. Many proteins may be expressed at low levels even when the corresponding 
reactions are inactive [76], e.g., because of post-transcriptional regulation or as a bet-
hedging strategy in case preferred carbon sources become available. In some species, 
including Saccharomyces cerevisiae, it is hard to find genes that are not expressed at least 
at low levels [63]. 

5.3.4 Alternative strategies to utilize expression data in FBA predictions
Compared to other methods, FECorr utilizes information from multiple conditions, 
comparing the expression of the same gene under different conditions. This approach 
controls for the fact that different enzymes have different kinetics, and thus the 
relationship between gene expression and flux varies between them. The disadvantage of 
FECorr is that it cannot be applied to single conditions. However, my comparison 
between different expression-based methods shows that when expression data from 
multiple conditions is available, FECorr performs better than alternative methods and 
should thus be preferred. 
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In contrast, ATM-FBA combined with a scaling of gene expression by kcat can be applied 
to single conditions and also copes with the different kinetics of enzymes. It uses binary 
gene expression states and is not quantitative. This can be perceived as a shortcoming; 
however, in my experience disagreement between expression and reaction activity is 
mostly binary (i.e., a reaction is predicted to be active although the enzyme is not 
expressed or vice versa), and thus a binary expression state already contains most of the 
important information. ATM-FBA performed better than previous methods based on 
gene expression in single conditions, likely both because of the expression level scaling 
and because of the automated selection of optimal cutoffs. The correlation between 
mRNA expression and enzyme abundance typically has an R2 of only around 50%. Thus, 
protein expression levels should show a much stronger correlation to reaction rates than 
mRNA data. Accordingly, I expect that ATM-FBA will perform even better when 
utilizing proteomics data.  

Scaling gene expression by kcat as a preprocessing step essentially results in gene-specific 
cutoffs for expression. I propose that this strategy may improve the accuracy of all 
existing methods that use expression data to predict reaction activities, except those that 
already use reaction-specific parameters (determined, e.g., from expression data across 
multiple conditions). 

Possibly the most surprising result of the method comparisons is the excellent 
performance of pFBA, which often gave the smallest error in the benchmarked dataset. 
However, pFBA cannot always be applied. In the benchmark study, pFBA results were 
based on inactivating the reactions associated with the knocked-out gene. Similar 
strategies are not possible if the aim is to predict flux distributions across different tissues 
of multicellular organisms or in tumor cells. Here, expression-based methods - in 
particular those described in this work - are likely to be far superior to pFBA. pFBA is 
based on the assumption that flux distribution with lower total flux require lower amounts 
of enzymes. Thus, pFBA corresponds to MOMENT* under the assumption that all 
reactions have the same kcat and all enzymes have the same molecular weight. It thus 
appears likely that using MOMENT* instead of pFBA may lead to even better results for 
the prediction of gene knockout flux distributions. 

5.3.5 Future work
The algorithms in this section were described for and applied to transcriptomic data 
obtained with microarray experiments. However, the algorithms can be applied equally to 
RNA-Seq data and proteomics data. Proteomics data in particular may provide better 
results, as reaction activities will correlate more strongly with protein abundance than 
mRNA abundance, and as the correlation between mRNA and protein expression levels 
is weak and not well understood. 
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It is also conceivable to use metabolomics data to improve the predictions of expression-
based algorithms. If a metabolite is found to be present in the cell, then at least one 
reaction producing it must be active. Thus, metabolomics data can be integrated using the 
same mathematical frameworks as used in ATM-FBA and eFBA_gene.  

Posttranscriptional regulation of enzymes may distort the predictions of expression-based 
methods, as mRNA and proteins may be present for an enzyme, but the enzyme may be 
unable to catalyze the associated reaction. One way to account for posttranscriptionally 
regulated enzymes would be to treat them separately, such that their abundance is only 
used to infer an upper bound for the reaction activity in FECorr, or that the inactivity of 
the associated reaction is not penalized even when the protein is expressed in ATM-FBA 
and eFBA-gene. 

The ideas implemented in ATM-FBA and eFBA-gene could be merged, such that ATM-
FBA penalizes disagreement between predictions and experiments based on individual 
genes rather than reactions.  

Besides these general additions, there are also specific algorithmic changes for the 
individual methods proposed here. In FECorr, one could apply the minimum disjunction 
algorithm suggested by [109] to avoid problems that may appear from direct substitution 
of AND with minimum and OR with sum in evaluating the GPR rules (e.g., to correctly 
parse GPRs of the form ((A  B)  (A  C))). In ATM-FBA, we could use two 
thresholds for gene expression data, such that intermediate expression levels are 
considered uninformative, such as done in the GIMME methods [82]. Both ATM-FBA 
and eFBA-gene might benefit from reaction-specific thresholds that could be based on a 
fixed percentage of the maximal flux according to CycleFreeFVA. eFBA-gene could 
further be improved through gene-specific thresholds implemented by scaling gene 
expression data with kcat, as done in ATM-FBA. The same scaling might also improve 
other expression-based methods [20, 63, 82-84]. 

On a more technical side, the functions findMDCFlux() and eFBA_gene() in the 
sybilEFBA package use a switch statement to select different solvers, which was the 
original style of extending Sybil. However, Sybil now uses the sysBiolAlg class for 
this purpose, and thus new solvers added to Sybil will not be recognized by the functions 
of sybilEFBA. Thus, the corresponding functions should be modified to use the 
sysBiolAlg class. More generally, it would be beneficial to also implement the 
methods introduced in this thesis in other popular frameworks for constraint-based 
analysis, such as the COBRA [30] and COBRApy [29] frameworks. 

The data used for the benchmarking of different expression-based models is only of 
limited utility for this purpose for two reasons. First, they are based on microarray data, 
which cannot be converted unambiguously to gene expression status or protein 
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abundance. Second, it is based on gene knockout experiments. The maximization of 
biomass production, which is employed in all expression-based methods, is only 
biologically relevant under the assumption that natural selection had enough time to 
optimize the metabolic network usage under the assayed conditions. This is not the case 
for gene knockouts, and the relationship between gene expression and reaction activity 
may thus be strongly distorted in these experiments. More suitable benchmarking data 
would instead be based on wild-type growth on growth media typical for the evolution of 
the strains under study.  

The methods proposed in this section are not only useful for the prediction of metabolic 
network usage in microbial growth experiments. An important application will be the 
identification of context-specific metabolic sub-models for the cells of different tissues in 
multicellular organisms based on gene expression data from these tissues [82]. 
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Appendix A
Table 8 non-trivial loops in iAF1260 model 

sn reactions in loop
loop
length

1 R_ABUTt2pp,R_GLUABUTt7pp,R_GLUt2rpp 3
2 R_ACCOAL,R_PPAKr,R_PPCSCT,R_PTA2,R_SUCOAS 5
3 R_ACKr,R_ACS,R_ADK1,R_PPKr,R_PTAr 5
4 R_ACt2rpp,R_ACt4pp,R_NAt3pp 3
5 R_ACt2rpp,R_ACt4pp,R_CA2t3pp,R_CAt6pp 4
6 R_ADK1,R_ADK3,R_NDPK1 3
7 R_ADK1,R_ADK3,R_NDPK1,R_PPM,R_PRPPS,R_R15BPK,R_R1PK 7
8 R_ACKr,R_ACS,R_ADK3,R_NDPK1,R_PPKr,R_PTAr 6
9 R_ALATA_L,R_VALTA,R_VPAMT 3

10 R_CA2t3pp,R_CAt6pp,R_SERt2rpp,R_SERt4pp 4
11 R_CA2t3pp,R_CAt6pp,R_PROt2rpp,R_PROt4pp 4
12 R_CA2t3pp,R_CAt6pp,R_GLYCLTt2rpp,R_GLYCLTt4pp 4
13 R_CRNDt2rpp,R_CRNt2rpp,R_CRNt8pp 3
14 R_GLBRAN2,R_GLCP2,R_GLCS1,R_GLDBRAN2,R_GLGC,R_PPKr 6
15 R_GLCP,R_GLCS1,R_GLGC,R_PPKr 4
16 R_GLBRAN2,R_GLCP2,R_GLCS1,R_GLGC,R_PPKr 5
17 R_GLUt2rpp,R_GLUt4pp,R_NAt3pp 3
18 R_GLYCLTt2rpp,R_GLYCLTt4pp,R_NAt3pp 3
19 R_HPYRI,R_HPYRRx,R_TRSARr 3
20 R_NAt3pp,R_SERt2rpp,R_SERt4pp 3
21 R_NAt3pp,R_PROt2rpp,R_PROt4pp 3
22 R_ACCOAL,R_PPAKr,R_PTA2 3
23 R_ACCOAL,R_PPCSCT,R_SUCOAS 3
24 R_ADK1,R_PPM,R_PRPPS,R_R15BPK,R_R1PK 5
25 R_ACKr,R_ACS,R_PPKr,R_PPM,R_PRPPS,R_PTAr,R_R15BPK,R_R1PK 8
26 R_NAt3pp,R_THRt2rpp,R_THRt4pp 3
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Table 9 non-trivial loops in iMM904 loops 

sn reactions in loop loop 
leng
th 

1 R_3MOPtm,R_ASPTA,R_ASPTAm,R_ASPt2m,R_ILETA,R_ILETAm,R_ILEtmi,
R_OAAt2m 

8 

2 R_4HGLSDm,R_PHCDm,R_PHCHGSm 3 
3 R_ACALDtm,R_ALCD2ir,R_ALCD2irm,R_ALCD2x,R_ETOHtm,R_MALtm, 

R_MDH,R_MDHm,R_OAAt2m,R_PIt2m 
10 

4 R_ACALDtm,R_ALCD2if,R_ALCD2irm,R_ETOHtm,R_FRDcm,R_FUM, 
R_FUMm,R_H2Otm,R_MDH,R_MDHm,R_OAAt2m,R_PIt2m,R_SUCCtm, 
R_SUCD1m 

14 

5 R_ACONT,R_ACONTm,R_CITtcm 3 
6 R_ACt2r,R_ACtr,R_PTRCt3i,R_PTRCtex2 4 
7 R_ACt2r,R_ACtr,R_GLYCt,R_GLYCt2 4 
8 R_ACt2r,R_ACtr,R_PYRt,R_PYRt2 4 
9 R_ADK1,R_ADK3,R_NDPK1 3 
10 R_ADK1,R_ADK4,R_NDPK9 3 
11 R_ADK1,R_ADK3,R_ADK4,R_NDPK1,R_NDPK9 5 
12 R_ADK3,R_ADK4,R_NDPK1,R_NDPK9 4 
13 R_AKGMAL,R_AKGt2r,R_MALt2r 3 
14 R_ACALDtm,R_ALCD2if,R_ALCD2ir,R_ALCD2irm,R_ETOHtm,R_FRDcm 

,R_FUM,R_FUMm,R_H2Otm,R_MALtm,R_MDH,R_MDHm,R_OAAt2m,R_PIt2
m, R_SUCCtm,R_SUCD1m 

16 

15 R_ACALDtm,R_ALCD2ir,R_ALCD2irm,R_ALCD2x,R_ETOHtm,R_FRDcm, 
R_FUM,R_FUMm, 
R_H2Otm,R_MALtm,R_MDH,R_MDHm,R_OAAt2m,R_PIt2m,R_SUCCtm, 
R_SUCD2_u6m, R_SUCD3_u6m 

17 

16 R_ACALDtm,R_ALCD2if,R_ALCD2irm,R_ETOHtm,R_MALtm,R_MDH, 
R_MDHm,R_OAAt2m,R_PIt2m 

9 

17 R_ALCD2if,R_ALCD2ir,R_ALCD2x 3 
18 R_ASPt2n,R_ASPt5n,R_CO2tn,R_H2Otn,R_HCO3E,R_HCO3En,R_HCO3tn 7 
19 R_CYSTGL,R_SHSL1,R_SHSL4r 3 
20 R_CYTK2,R_DCMPDA,R_DCTPD,R_NDPK6,R_NDPK7,R_URIDK2r 6 
21 R_D_LACt2m,R_D_LACtm,R_PYRt2m 3 
22 R_FRDcm,R_FUM,R_FUMm,R_H2Otm,R_MALtm,R_SUCCtm,R_SUCD2_u6m, 

R_SUCD3_u6m,R_SUCFUMtm 
9 

23 R_FRDm,R_SUCD1m,R_SUCD2_u6m,R_SUCD3_u6m 4 
24 R_FRDcm,R_FUM,R_FUMm,R_H2Otm,R_MALtm,R_SUCCtm,R_SUCD2_u6m, 

R_SUCD3_u6m 
8 

25 R_FRDcm,R_FUM,R_FUMm,R_H2Otm,R_MALtm,R_SUCCtm,R_SUCD1m 7 
26 R_G6PI,R_G6PI3,R_PGI 3 
27 R_GALT,R_GALU,R_UGLT 3 
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28 R_GK1,R_GK2,R_NDPK8 3 
29 R_ACALDtm,R_ALCD2irm,R_ALCD2x,R_ETOHtm,R_MALtm,R_MDH, 

R_MDHm,R_OAAt2m,R_PIt2m 
9 

30 R_GLYCt,R_GLYCt2,R_PTRCt3i,R_PTRCtex2 4 
31 R_PTRCt3i,R_PTRCtex2,R_PYRt,R_PYRt2 4 
32 R_ACt2r,R_ACtr,R_GLYCt,R_GLYCt2,R_PTRCt3i,R_PTRCtex2 6 
33 R_ACt2r,R_ACtr,R_PYRt,R_PYRt2,R_SPMDt3i,R_SPMDtex2 6 
34 R_SUCD1m,R_SUCD2_u6m,R_SUCD3_u6m 3 
35 R_ACALDtm,R_ALCD2irm,R_ALCD2x,R_ETOHtm,R_FRDcm,R_FUM, 

R_FUMm,R_H2Otm,R_MALtm,R_MDH,R_MDHm,R_OAAt2m,R_PIt2m, 
R_SUCCtm, R_SUCD1m 

15 

36 R_FRDcm,R_SUCD1m,R_SUCFUMtm 3 
37 R_FRDcm,R_FUM,R_FUMm,R_H2Otm,R_MALtm,R_SUCCtm,R_SUCD1m, 

R_SUCD2_u6m, R_SUCD3_u6m 
9 

38 R_FRDm,R_SUCD2_u6m,R_SUCD3_u6m 3 
39 R_FRDcm,R_SUCD2_u6m,R_SUCD3_u6m,R_SUCFUMtm 4 
40 R_FRDcm,R_SUCD1m,R_SUCD2_u6m,R_SUCD3_u6m,R_SUCFUMtm 5 
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